Contents lists available at ScienceDirect

Diamond & Related Materials

journal homepage: www.elsevier.com/locate/diamond

Chemical and semiconducting properties of NO₂-activated H-terminated diamond

M.W. Geis^{a,*}, T.H. Fedynyshyn^{a,*}, M.E. Plaut^a, T.C. Wade^{a,*}, C.H. Wuorio^a, S.A. Vitale^a, J.O. Varghese^a, T.A. Grotjohn^b, R.J. Nemanich^c, M.A. Hollis^a

^a Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, United States

^b Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States

^c Physics, Arizona State University, Tempe, AZ, United States

ARTICLE INFO

Keywords: Diamond Hydrogen-termination Molecular adsorption Nitrogen dioxide

ABSTRACT

The H-terminated surface of diamond when activated with NO₂ produces a surface conduction layer that has been used to make field effect transistors (FETs). Previous reports have suggested that during NO₂ exposure (NO₂-activation), NO₂⁻ forms on the diamond surface and generates positive carriers (holes) in the diamond, making the diamond surface conductive. We report here on X-ray-photoelectron-spectroscopy (XPS) surface characterization of single crystal diamonds and on infrared absorption of diamond powder. After activation, XPS showed the presence of N atoms on the diamond surface, but infrared absorption found no evidence of NO₂⁻, but instead NO₃⁻ is present on the diamond surface.

Two wet chemistry techniques determined the concentration of NO₃⁻ per milligram of diamond powder. With the powder's surface area measured by the BET technique, the surface NO₃⁻ concentration was measured to be between 6.2×10^{13} and 8.2×10^{13} cm⁻². This is in the same range as the carrier densities, 3×10^{13} to 9×10^{13} cm⁻², determined by Hall mobility and surface conductivity measurements of single crystal diamonds. Using similar techniques, the concentration of NO₂⁻ was determined to be $< 10^{12}$ cm⁻².

Both the surface conductance and the surface H atoms are stable in dry nitrogen, with or without NO₂activation, but the surface conductance, the concentrations of H atoms both with and without activation and NO₃⁻ decrease when exposed to laboratory air over a period of hours to days. Infrared absorption measurements showed the reduction of surface NO₃⁻ and H atoms during laboratory air exposure, but gave no indication of what reactions are responsible for their loss in laboratory air.

1. Introduction

When the surface of diamond is covered with H atoms (H-terminated) the diamond becomes conductive when exposed to air [1]. This conductivity is further enhanced when covered with a layer of a highwork-function material (activation) by transfer doping [2,3]. Impressive field effect transistors (FETs) have been made, using this conductive layer with current densities > 1 A/mm [4,5], a wide operational temperature range, -263 (10 K) to 400 °C [4], high-voltage operation > 1 kV [4,6], and high maximum frequency of oscillation, f_{max} , \sim 100 GHz [7,8]. Of all the high-work-function activation compounds, MoO₃ [9,10], V₂O₃ [9,11] Al₂O₃ [4], and others, the gas, NO₂, gives one of the lowest surface resistance increases by nearly an order of magnitude to \sim 5 k Ω sq⁻¹. Still, to date NO₂-activated diamond FETs exhibit the highest drain current \sim 1.3 A/mm [5,8]. This

article discusses the chemistry of NO_2 -diamond activation and how it impacts the surface conductance.

NO₂ was first identified as being capable of activating diamond at concentrations as low as 5 to 10 parts per billion (ppb) [13,14]. Natural concentrations of NO₂ in air is from 20 to 60 ppb [15], and along with other atmospheric components cause the H-terminated diamond surface to become conductive over tens of minutes. Unsurprisingly, atmospheric activation is inconsistent and unstable in time as other atmospheric components (NH₃, organic amines etc.) will deactivate diamond or irreversibly react with the diamond surface, increasing the surface resistance to > 10 k Ω sq⁻¹. Kasu et al. suggested two mechanisms for NO₂-activation. In the first mechanism, NO₂ pulls electrons out of the diamond to form the conductive hole layer and NO₂⁻ [16,17]. In the second mechanism, some unknown reaction occurs on the diamond surface, forming a negative surface charge, not NO₂⁻, and hole conduction in the diamond [18]. We favor the latter of the two models.

https://doi.org/10.1016/j.diamond.2018.03.002

^{*} Corresponding authors. E-mail addresses: Geis@LL.mit.edu (M.W. Geis), Fedynyshyn@LL.mit.edu (T.H. Fedynyshyn), Travis.Wade@LL.mit.edu (T.C. Wade).

Received 12 January 2018; Received in revised form 28 February 2018; Accepted 5 March 2018 Available online 06 March 2018 0925-9635/ © 2018 Elsevier B.V. All rights reserved.

Fig. 1. X-ray photoelectron spectroscopy (XPS) of a single crystal (100) H-terminated NO₂-activated diamond. The electron intensity peaks are labeled with their corresponding elements. The silicon peak is believed from impurities incorporated into the diamond during growth.

Using x-ray-photoelectron-spectroscopy (XPS), Fourier-transform-infrared-spectroscopy (FTIR), wet chemical analysis for NO₂⁻ and NO₃⁻, and electrospray mass spectrometry (ESMS), we found no evidence of NO₂⁻, but instead found concentrations of NO₃⁻ matching the surface hole concentrations, 3×10^{13} to 9×10^{13} cm⁻² as calculated from Hall mobility and surface conductivity. Additionally, the NO₂ reacts with the hydrogen atoms on the H-terminated diamond surface, removing between 25 and 75% of them. While it is believed that the presence of NO₃⁻ is a necessary condition for diamond hole conduction, it is unknown what impact the removal of H atoms has on the conduction or what replaces it in the areas where hydrogen is removed.

2. Experimental procedure and characterization

Several characterization tools have been applied to characterize the effect of NO_2 on H-terminated diamond.

2.1. XPS

XPS of H-terminated, NO₂-activated (100) diamond is shown in Figs. 1 and 2. The diamond was etched in molten NaNO₃, H-terminated and NO₂ activated as described by Wade et al. [19]. These results are similar to those of Kasu [18] with O and C atoms covering most of the surface, but no indication of N atoms. However, on closer examination of our diamond there is a weak N signal, Fig. 2. From the ratio of the areas, using a Mg anode target and the sensitivity factors for the Perkin Elmer model 5500, the concentrations of C:O:N respectively, M_i, were 68.6%, 29.7% and 1.7%. Neglecting the O concentration and assuming all the N atoms are on the diamond surface, the concentration of N atoms in monolayers, Θ_N , is estimated by [20].

$$egin{aligned} \Theta_{\mathrm{N}} &= rac{M_{N}}{M_{C}} imes \sum_{n=0}^{\infty} \exp \left[rac{-n * d_{Dia}}{\lambda_{Dia} * \cos(arphi)}
ight] \ &= rac{M_{N}}{M_{C}} \Biggl[1 - \exp \Biggl[rac{-d_{Dia}}{\lambda_{Dia} * \cos(arphi)} \Biggr] \Biggr]^{-1}. \end{aligned}$$

 M_N and M_C are the concentrations of N and C atoms; d_{Dia} is the

Fig. 2. XPS over the binding energies assigned to nitrogen. The integrated area under the peak associated with N is 1.7% of the combined areas of O, N and C. Carbon area is 68.6% and O is 29.7%.

spacing between two (100) planes, 0.357 nm; take off angle, φ , is 45°; and λ_{Dia} is the electron attenuation length, EAL, of C1s electrons, ~1.74 nm at an electron energy of ~970 eV [21]. The estimated N coverage is 0.098 monolayer or $1.5 \times 10^{14} \,\mathrm{cm}^{-2}$.

After XPS characterization, the sample's resistance was $7 k\Omega sq^{-1}$ with a Hall mobility of $30 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ giving an estimated carrier density of $3.0 \times 10^{13} \text{ cm}^{-2}$. Assuming each N atom represents a negatively charged molecule that generates a hole, the XPS-estimated N surface density is within an order of magnitude of the carrier density. The peak associated with O is likely from absorbed H₂O and CO₂ and chemically bounded OH and CO. All of which appear in the infrared spectrum discussed below. Although, H₂O and CO₂ individually have been shown not to contribute to surface conduction [8], they may increase conductance in combination with other components.

The XPS measured binding energies are 283.9 eV for C and 399.1 eV for N. The binding energy for C is consistent with a H-terminated diamond surface [22]. However, the binding energy for N is consistent with cyanides, CN, and not for the binding energies of nitrites, NO_2^- , 404–405 eV or nitrates, NO_3^- , 407–408 eV [23]. Since we see only N in the form of nitrates as discussed below using FTIR, we speculated that XPS emission from nitrates is shifted by a negative potential locally on the surface where the nitrates are absorbed compared to the bulk of the diamond.

2.2. Infrared absorption by FTIR

XPS is a powerful technique, but does not have the ability to accurately determine surface concentrations and molecular structure at low surface concentration levels, 1×10^{12} cm⁻². Another approach, infrared absorption with FTIR of diamond powder was used. It has sensitivity to surface concentrations of $< 1 \times 10^{12}$ cm⁻² depending upon the diamond powder's surface area per gram and the infrared optical cross section of the surface component. Diamond powder, 0 to 0.25, formed from high-pressure high-temperature (HPHT) diamonds, washed with 1 to 1 HCl and H₂O₂, heated to 525 °C in air for > 15 h, and stored in dry N₂, was used as the starting material. Figs. 3 and 4 show a wide distribution in particle size. H-termination was accomplished by first evenly dispersing 60 to 100 mg of powder in a 2.5 cm circle centered on a $2.25 \times 2.25 \times 0.025$ -inch Al₂O₃ plate. H-

Download English Version:

https://daneshyari.com/en/article/7110908

Download Persian Version:

https://daneshyari.com/article/7110908

Daneshyari.com