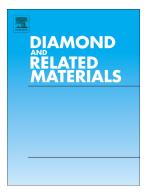
Accepted Manuscript

Effect of unbonded hydrogen on amorphous carbon film deposited by PECVD with annealing treatment

Ruida Sheng, Liejun Li, Dongyi Su, Jihua Peng, Jixiang Gao, Kelun Zhao, Zhengwu Peng

PII: S0925-9635(17)30452-1

DOI: doi:10.1016/j.diamond.2017.12.002


Reference: DIAMAT 6980

To appear in: Diamond & Related Materials

Received date: 17 August 2017 Revised date: 12 November 2017 Accepted date: 3 December 2017

Please cite this article as: Ruida Sheng, Liejun Li, Dongyi Su, Jihua Peng, Jixiang Gao, Kelun Zhao, Zhengwu Peng, Effect of unbonded hydrogen on amorphous carbon film deposited by PECVD with annealing treatment. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Diamat(2017), doi:10.1016/j.diamond.2017.12.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of unbonded hydrogen on amorphous carbon film deposited by PECVD with

annealing treatment

Ruida Sheng¹, Liejun Li¹, Dongyi Su², Jihua Peng^{3,*}, Jixiang Gao¹, Kelun Zhao¹, Zhengwu

Peng¹

- 1, School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou, 510640, China
- 2, Guangzhou GrandTech Science and technology, 22 Jungong, Guangzhou, 510640, China
- 3, School of Materials Science and Engineering, South China University of Technology, 381 Wushan, Guangzhou, 510640, China

* Corresponding author

E-mail address: jhpeng@scut.edu.cn; ruidasheng@gmail.com

Tel: + 86 20 87111116; Fax: + 86 20 87112111

Abstract

A type of hydrogenated amorphous carbon film was deposited by plasma-enhanced chemical vapor deposition. With high-energy ion bombardment and high ionization rate, hydrogen was found to exist in the film mainly in forms of hydrogen molecules, as well as isolated atoms, instead of bonding with carbon atoms. To investigate the effect of unbonded hydrogen on thermal stability of amorphous carbon film, specimens were annealed and the temperatures of annealing were selected on the basis of differential scanning calorimetry (DSC) test. The chemical composition and structural properties of the contained samples were analyzed by scanning electron microscopy/ energy dispersive spectrometer (SEM/EDS), 3D non-contact surface mapping profiler, Fourier transformation infrared spectroscopy (FTIR), mass spectrometry (MS), Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The mechanical and tribological properties were investigated by nano-indentation, stress-tester and ball-on-disk tribometer. The results showed that

Download English Version:

https://daneshyari.com/en/article/7111070

Download Persian Version:

https://daneshyari.com/article/7111070

<u>Daneshyari.com</u>