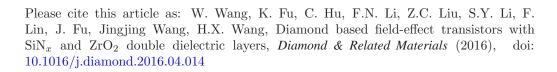
Accepted Manuscript

Diamond based field-effect transistors with SiN_x and ZrO_2 double dielectric layers

W. Wang, K. Fu, C. Hu, F.N. Li, Z.C. Liu, S.Y. Li, F. Lin, J. Fu, Jingjing Wang, H.X. Wang


PII: S0925-9635(16)30121-2

DOI: doi: 10.1016/j.diamond.2016.04.014

Reference: DIAMAT 6633

To appear in: Diamond & Related Materials

Received date: 1 December 2015 Revised date: 28 April 2016 Accepted date: 28 April 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Diamond based field-effect transistors with SiN_x and ZrO_2 double dielectric layers

W. Wang¹, K. Fu², C. Hu¹, F. N. Li¹, Z. C. Liu¹, S. Y. Li¹, F. Lin¹, J. Fu¹, Jingjing Wang³,* and H. X. Wang*

¹Key Laboratory for Physical Electronics and Devices of the Ministry of Education, the School of Electronic and Information Engineering, Xi'an Jiaotong University,

Xi'an 710049, P. R. China

²Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China.

³Nation Key Laboratory of ASIC, Hebei Semiconductor Research Institute,

Shijiazhuang 050051, China

*corresponding author: hxwangcn@mail.xjtu.edu.cn, cooper_shenyang@163.com

Abstract: A diamond-based field-effect transistor (FET) with SiN_x and ZrO₂ double dielectric layer has been demonstrated. The SiNx and ZrO2 gate dielectric are deposited by plasma-enhanced chemical vapor deposition (PECVD) and radio frequency (RF) sputter methods, respectively. SiN_x layer is found to have the ability to preserve the conduction channel at the surface of hydrogen-terminated diamond film. The leakage current density (J) SiN_x/ZrO_2 metal-insulator-semiconductor FET (MISFET) keeps lower than 3.88×10⁻⁵ A·cm⁻² when the gate bias was changed from 2V to -8V. The double dielectric layer FET operates in a p-type depletion mode, whose maximum drain-source current, threshold voltage, maximum transconductance, effective mobility and sheet hole density are determined to be -28.5 mA·mm⁻¹, 2.2V, 4.53 mS·mm⁻¹, 38.9 cm²·V⁻¹·s⁻¹, and $2.14 \times$ 10¹³ cm⁻², respectively.

Key words: field-effect transistor; double dielectric layer; SiN_x/ZrO_2 ; conduction channel

1. Introduction

Recently, diamond is considered to be an ideal material for the next generation of power devices and high frequency field effect transistor (FET) due to its wide band

Download English Version:

https://daneshyari.com/en/article/7111165

Download Persian Version:

https://daneshyari.com/article/7111165

Daneshyari.com