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Abstract: The fit ratio is one of the most commonly used criteria to evaluate a result of
system identification in the time domain. This criterion is given by the root mean squared error
(RMSE) divided by the standard deviation of the measured signal. However, the fit ratio has
some problems. For example, it can take negative values because it is not normalized, and it is
easy to obtain a better value for a low-amplitude signal than for a high-amplitude signal. In this
paper, we introduce some normalized criteria from the field of physical geography and consider
criteria that resolve these problems. We evaluated these criteria through two case studies. We
found that the correlation coefficient was effective to evaluate the phase, and a criterion obtained
from the triangle inequality was effective for evaluating the gain and phase.
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1. INTRODUCTION

Recently, mathematical models have been used for the
design of control systems even in the field of industrial ap-
plications. The mathematical models are often constructed
by physical modeling or system identification. In this pa-
per, we focus on system identification. Once the models
are obtained, it is necessary to validate the some aspects
of them. This step is called model validation. For example,
Ljung (1998) noted that

e simulation in the time domain,

e comparison of some methods in the frequency do-
main, and

e pole and zero cancellation in the s (or z) domain

are often checked. Also, independence between the resid-
uals and the past input is usually tested using the sample
covariance. If the model is constructed by physical mod-
eling, the feasibility of the physical parameters is often
checked and is used to evaluate.

Simulation in the time domain is the most useful and
intuitive validation method for evaluating the goodness
of the model. Mean squared error (MSE) or root mean
squared error (RMSE) are often used for the comparison
criteria. Because these criteria are based on a physical
quantity, their orders can be significantly different, and
they do not seem to be suitable for discussion in general
terms about comparison of two waveforms.

Therefore, a criterion based on a dimensionless quantity
that does not depend on physical quantity appears to be
required for simulation. Some criteria based on dimen-
sionless quantities (called dimensionless criteria in this
paper) have been proposed in a field of physical geography
(especially hydrology and climatology) since the 1970s.
First of all, Nash and Sutcliffe (1970), and Garrick et al.
(1978) proposed the coefficient of efficiency E to evaluate

the rainfall runoff model. The coefficient of efficiency is
sometimes called the Nash-Sutcliffe model efficiency coef-
ficient (NSE). This criterion is given by the MSE divided
by the variance of the observed values, and it takes a
maximum value when the predicted values are identical
to the observed values. However, it takes negative values
when the MSE is greater than the variance of the measured
values. Therefore, Willmott (1981) and Willmott et al.
(1985) proposed the index of agreement, which normalizes
the MSE to a velue from 0 to 1.

In the field of system identification, the fit ratio (some-
times called the NRMSE fitness value), which is the RMSE
divided by the standard deviation of the measured values,
is often used for evaluation. This criterion is implemented
in System Identification Toolbox for MATLAB® (Math-
works.co.jp, 2015). However, similarly to the coefficient
of efficiency, this criterion takes values from —oo to 100,
making it unsuitable for use as an intuitive criterion for
evaluation.

In this paper, we introduce some normalized criteria from
the field of physical geography, and consider criteria that
resolve the fit ratio’s problem. Then we evaluate the
criteria using some case studies.

2. UNNORMALIZED DIMENSIONLESS CRITERIA

We introduce two unnormalized criteria, that is, the co-
efficient of efficiency and the fit ratio. Then, we show the
problems of these criteria.

2.1 Coefficient of efficiency

The coefficient of efficiency (hereinafter denoted by E) is
defined by
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where y(k) and g(k) are the measured output and the
simulated output at time k, respectively, 7 is the average
value of y, and N is the number of samples. E takes a
value of 1 when the MSEs of y and ¢ are equal to 0, and E
takes a negative value when the MSE is greater than the
variance of the measured output. Furthermore, E takes a
value of —oo when the simulated output diverges. In this
way, E does not intuitively appear to be associated with
the similarity between y and 3.

However, E' was recommended as a criterion for evaluating
the rainfall runoff model by the ASCE Task Committee
(1993) and Legates and McCabe (1999) because it has
a meaningful interpretation. One interpretation is that if
FE <0, the mean measured value is a better predictor than
the simulated value. Additionally, Moriasi et al. (2007)
claimed that if £ > 0, the model can be viewed as having
acceptable performance. Thus, we can conclude that

(1) E<0
(2) 0<E<L1

: model is not acceptable,
: model is acceptable.

In this paper, we call this Moriasi’s rule.
2.2 Fit ratio

The fit ratio (hereinafter denoted by FIT) is defined by

When y(k) is identical to g(k) for all & = 1,..,N,
FIT becomes 100. Since in the second term the RMSE
is normalized by the standard deviation of y, FIT can
take negative values when the RMSE is greater than the
standard deviation of y, similarly to E, i.e.,

N N
D k) = 9(k)2 > (| > (y(k) —7)%
k=1 k=1
In particular, if the RMSE tends to oo, FIT tends to —oco

This property of FIT appears to make it unsuitable for the
evaluation of system identification.

2.8 Problems of these criteria

In this section we show through an example that F, FIT,
and Moriasi’s rule are not appropriate for evaluating the
result of system identification. As an illustrative example,
let us consider the Linear Time-Invariant (LTI) system:

y(k) = G(q)u(k), (3)
where u(k) and y(k) are the input and output at time k, re-
spectively, G(q) denotes a discrete time transfer function,
and ¢ denotes a shift operator. As the identification input
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Fig. 1. Waveforms in the example: gain shift case (black
solid line: y(k), Blue dashed line: §1(k), Red dashed
line: g_(k))
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Fig. 2. Waveforms in the example: phase shift case (black
solid line: y(k), blue dashed line: y,(k), Red dashed

line: y,—(k))

u, two periods of a pseudo-random binary signal (PRBS)
with a period of 1023 are used.

We assume that true system is given by
-1 -2
g +0.5q
G =
=T 57+ 07g2

Now we assume that following four models are estimated:

G.(g) =2.01G(q), G_(q) =0.49G(q),

Gpla) = G(a)a™>, Gp—(q) = 049G(q)q >,
where the first two models é+ and G_ are the same except
for their gains, and the latter two models G, and G,_ are
the same except for their gains. We apply u to the models,
and we obtain the following four simulated outputs:

§+(k) = G (q)u(k), §-(k) = G_(q)u(k),

Up(k) = ép(Q)u(k)v Up— (k) = ép—(Q)u(k)-
Moreover, if G = 0, y takes a value of 0 all the time. We
call this output “zero output”. We calculate E' and FIT
for four simulated outputs and the zero output.

Figure 1 shows the true output y (black solid line) and the
simulated outputs ¢4 and g_ (blue and red dashed lines,
respectively) for 0 to 200 samples. In the same way, Fig.2
shows the true output y and the simulated outputs ¢, and
Up— for 0 to 200 samples. Table 1 shows the values of E
and FIT and the acceptance results according to Moriasi’s
rule. E and FIT take negative values for g, having about
twice the amplitude of y, but they take positive values for
7J— having about half the amplitude of y. Similarly, they
take negative values for 7, having three taps delay and
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