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that indirect PEM yields a non-convex problem in that case. A numerical simulation may
indicate that this approach is competitive with other existing methods.
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1. INTRODUCTION

Due to the rising complexity of systems encountered
in engineering problems, identification of systems that
are embedded in a dynamic network has become an
increasingly relevant problem. Thus, several contributions
have recently been provided in this area, e.g., Dankers
et al. (2014), Everitt et al. (2014), Van den Hof et al.
(2013), Dankers et al. (2013), Everitt et al. (2013), Van den
Hof et al. (2012), Hägg et al. (2011), Wahlberg and
Sandberg (2008), Wahlberg et al. (2008).

A common particular case of such networks is the identi-
fication of acyclic cascade structures, e.g., the system in
Fig. 1. It contains one external input, u(t), and two out-
puts, y1(t) and y2(t), with measurement noises e1(t) and
e2(t), respectively, which, for the purpose of this paper,
are Gaussian, white, and uncorrelated to each other, with
variances λ1 and λ2. A general discussion on identification
and variance analysis of this type of cascade systems is
taken in Wahlberg et al. (2008).
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Fig. 1. Cascade system with two transfer functions.

The goal of system identification is to estimate the transfer
functions G1(q) and G2(q), where q is the forward-shift
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operator. Mathematically, the system in Fig. 1 can be
described by

y1(t) = G1(q)u(t) + e1(t) (1a)

y2(t) = G2(q)G1(q)u(t) + e2(t). (1b)

First, notice that the transfer function G1(q) can be es-
timated with (1a) from the signals u(t) and y1(t), us-
ing standard system identification techniques. Likewise,
the product G2(q)G1(q) =: G21(q) can be estimated in a
similar fashion from (1b), using u(t) and y2(t) as data.
However, the input to the transfer function G2(q), indi-
cated in Fig. 1 as u2(t), is not known. Therefore, G2(q)
cannot be estimated directly using a similar approach.
A possible strategy to obtain G2(q) from the previously
obtained estimates of G1(q) and G21(q) is to use the
relation G2(q) = G21(q)G

−1
1 (q). However, that does not

allow imposing a particular structure on G2(q). Further-
more, if G1(q) and G21(q) are estimated in the previously
presented way, information that could be useful for the
estimation is neglected. For example, using also y2(t) when
estimatingG1(q) can improve the variance of the estimates
(see Everitt et al. (2013)).

Another possibility, which solves the problem of impos-
ing structure, is to estimate G2(q) using y2(t) and an
estimate of u2(t) as data. However, the presence of in-
put noise makes this an errors-in-variables (EIV) prob-
lem (Söderström (2007)). When applied to this type of
problem, standard system identification methods typically
yield parameter estimates that are not consistent. In-
strumental variable (IV) methods (Söderström and Sto-
ica (2002)) can be used to solve this problem, since
some choices of instruments provide consistent estimates
(see, e.g., Söderström and Mahata (2002) and Thil et al.
(2008)). A generalized IV approach for EIV identification
in dynamic networks has been proposed in Dankers et al.
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lem (Söderström (2007)). When applied to this type of
problem, standard system identification methods typically
yield parameter estimates that are not consistent. In-
strumental variable (IV) methods (Söderström and Sto-
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lem (Söderström (2007)). When applied to this type of
problem, standard system identification methods typically
yield parameter estimates that are not consistent. In-
strumental variable (IV) methods (Söderström and Sto-
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(2014). However, using the system in Fig. 1 as an example,
notice that y2(t) is still not used when estimating G1(q).

If the prediction error method (PEM) is applied to a
model structure parametrized according to (1) and to the
individual structures ofG1(q) andG2(q), the obtained esti-
mates are asymptotically efficient (see, e.g., Ljung (1999)).
However, for such a model structure, PEM requires, in
general, solving a non-convex optimization problem.

In Wahlberg et al. (2008), indirect PEM (Söderström et al.
(1991)) is suggested as a suitable method for identification
of cascade systems. In this method, PEM is first applied
to a higher-order model. In a second step, this model is
reduced to the model of interest in an optimal way, in the
sense that the obtained estimate has the same asymptotic
properties as if PEM had been applied to the smaller
model directly. If the model in the first step is easier to
estimate than the model of interest, the original problem
is simplified.

In this contribution, we restrict ourselves to the case
that each transfer function is a single-input single-output
(SISO) finite impulse response (FIR) model. First, in Sec-
tion 2, we revisit the application of IV methods to EIV
problems. In Section 3, we review indirect PEM, and ex-
tend the discussion in Wahlberg et al. (2008) regarding the
application to cascade structures. In Section 4, we point
out that this method can be applied even if not all the
transfer function outputs in a network are measured. Then,
we consider a feedback cascade structure in Section 5,
for which indirect PEM does not avoid non-convexity,
and propose an intermediate step using the method in
Galrinho et al. (2014). A numerical simulation is presented
in Section 6, followed by a discussion in Section 7.

2. ERRORS-IN-VARIABLES METHODS

Consider the SISO system G(q), and assume that data is
generated according to

{

yo(t) = G(q)u(t)
y(t) = yo(t) + ỹ(t)

, (2)

where yo(t) is the true system output, y(t) is the measured
output, corrupted by noise ỹ(t), and the input u(t) is
assumed to be known. We introduce the assumption that
G(q) is FIR, and parametrize it accordingly as

G(q, θ) = θ1q
−1 + θ2q

−1 + · · ·+ θnq
−n,

and that ỹ(t) is Gaussian white noise.

The prediction error method (PEM) serves as benchmark
in the field, since it is well known to provide asymptotically
efficient estimates if the model orders are correct (Ljung
(1999)). The essential idea of PEM is to minimize a cost
function of the prediction errors. In this setting, PEM
consists on minimizing the cost function

V (θ) =
1

N

N
∑

t=1

(y(t)−G(q, θ)u(t))
2
, (3)

if a quadratic cost is used, and where N is the number
of samples available. Then, the minimizer of (3) is an
asymptotically efficient estimate of θ, if the model orders
are correct. In general, PEM requires solving a non-convex
optimization problem. However, for this particular model
structure, the minimizer of (3) can be obtained by solving a

least squares (LS) problem. Defining the regression vector
as

ϕ⊤(t) := [u(t− 1) u(t− 2) . . . u(t− n)] ,
it is possible to write

y(t) = ϕ⊤(t)θ + ỹ(t),

where
θ = [θ1 θ2 . . . θn]

⊤
.

Further, if we define

y = [y(1) y(2) . . . y(N)]
⊤
,

Φ⊤ = [ϕ(1) ϕ(2) . . . ϕ(N)]
⊤
,

and ỹ analogously to y, we can write

y = Φ⊤θ + ỹ.

An estimate of θ, which corresponds to the minimizer
of (3), can be obtained by LS, computing

θ̂ =
(

ΦΦ⊤
)−1

Φy. (4)

We consider now the case when the true input is not
known, but it can be measured, and is corrupted by
measurement noise. In this case, the data is generated
according to

{

yo(t) = G(q)uo(t)
u(t) = uo(t) + ũ(t)
y(t) = yo(t) + ỹ(t)

,

where uo(t) is the true input, ũ(t) the input measure-
ment noise, and u(t) the measured input. This set-
ting corresponds to an errors-in-variables (EIV) problem
(Söderström (2007)). In this scenario, we have that

{

y(t) = ϕ⊤(t)θ + v(t, θ)
v(t, θ) = ỹ(t)− ϕ̃⊤(t)θ

,

where, if ϕo is defined analogously to ϕ, but containing
true input values uo, then

ϕ̃(t) = ϕ(t) − ϕo(t).

Because v(t, θ) is not white, if the parameter vector θ is
estimated according to (4), the obtained estimate is not
consistent.

Instrumental variable (IV) methods are appropriate to
deal with EIV problems. The basic idea of IV methods is
to choose a vector of instruments z(t) that is uncorrelated
with the error v(t, θ), while being highly correlated with
ϕ(t). Then, for such an instrument vector, computing

θ̂ =
(

ZΦ⊤
)−1

Zy,

where
Z = [z(1) z(2) . . . z(N)] ,

yields a consistent estimate of θ under certain excitation
conditions.

There is no unique way to define z(t). One approach,
proposed in Söderström and Mahata (2002), is to choose

z⊤(t) = [u(t− 1− du) . . . u(t− du − nzu)] ,

where du ≥ n. Another possibility, proposed in Thil et al.
(2008), is to also include past outputs in the instrument
vector, according to

z⊤(t) =
[

−y(t− 1− dy) . . . −y(t− dy − nzy)

u(t− 1− du) . . . u(t− du − nzu)] ,
(5)

where dy is at least the order of the filter (it must be a
moving average (MA) filter) applied to the noise. For the
considered FIR case, dy ≥ 0.
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