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Abstract: The paper reports a method for identification of parametric models that are linear
and time-invariant in parameters, but arbitrarily nonlinear in signals. Set-bounding solutions
are exploited to simultaneously identify and parametrize the model structure. Measures of
set-solution quality are used as fitness measures in evolving the structure. Experiments verify
effective NARX and NARMAX identification in complex unmodeled disturbances.
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1. INTRODUCTION

Contemporary modeling problems increasingly require so-
lutions that transcend conventional linear, time-invariant
(LTT) system approaches. Nonlinear and / or time-varying
models are difficult around which to design, analyze, and
compute solutions. In spite of significant innovation and
effort among the system identification (SYSID) research
community [e.g., (Billings and Zhu, 1994; Milanese et al.,
1996; Wigren, 2006; Keesman, 2002)], nonlinear model
identification poses many unanswered questions in con-
trast with the treasury of theoretical and practical LTI
knowledge available to the SYSID practitioner. In this
paper, we adopt one approach to accounting for non-LTI
system properties, without entirely abandoning the advan-
tages of LTI identification. This compromise is achieved
using models that are LTI in parameters (LTIiP), with
nonlinearities accounted for in the signal processing by
the system. LTTiP nonlinear models are versatile and only
marginally more difficult to work with than systems with
purely LTT structure.

Any LTIiP-based identification procedure must select ef-
fective model terms (regressor signals) and estimate the
parameters from inputs and output observations in the
presence of noise that is generally correlated or with
nonlinear dependencies. An approach by Sjoberg et al.
(1995) uses an initial model with a broad collection of
nonlinear terms, then prunes (backward elimination) the
insignificant components. This approach is known to cause
numerical and computational problems (Billings, 2013).
Sjoberg et al. (1995) also suggest a residual-based selection
approach in which terms are selected sequentially accord-
ing to a measure of goodness of fit (forward selection). An
example of this approach is the FROLS algorithm (Chen
et al., 1991; Billings and Zhu, 1994) which is based on
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the orthogonal least squares (OLS) estimator. In order to
achieve unbiased parameter estimation in the presence of
colored or more complex noise, FROLS must repeatedly
refit the noise model. Moreover, the forward selection is
greedy by only adding one term at a time.

A significant body of work by SYSID researchers has
used of parameter-set-bounding approaches, often called
set-membership (SM) algorithms. This research can be
partitioned into two categories. The first involves explicitly
nonlinear system approaches, many resulting in algorithms
of high computational complexity. Efforts of this type are
reported in the seminal literature on set-based methods,
1 and the comprehensive study by Milanese and Novara
(2004) involving noise and functional gradient bounds
provides a more recent example of this type with a clear
contrast to the second category. The second partition of
set-based approaches uses more conventional LTI models
(ARX-like with various noise models) in which LTTiP
results are implicit, but not the focus of the work.? The
latter work has not featured nonlinearities because, with a
predetermined model structure, the nonlinear aspects of a
LTTiP model are present only as numerical observations
with a cumulative effect in the residuals. Accordingly,
results are very nomspecific to the effects of particular
nonlinearities, but at the same time, are quite sensitive
to them. In this paper, however, the LTTiP structure is of
very deliberate concern. Contrary to previous work, the
nonlinear structure of the model does not remain static in
the identification process.

Two lines of reasoning underlie the methods in this paper.
First, it is difficult to assess the effects of a predetermined,

I The literature in this area is vast. The following citations, e.g.,
provide extensive reference lists: (Milanese et al., 1996; Milanese and
Vicino, 1996; Deller et al., 1993; Walter and Piet-Lahanier, 1990).

2 In addition to the citations in footnote 1, the paper by Deller et al.
(1994) provides a unified view of the “second partition” methods.
Fogel and Huang (1982) published the seminal work of this type
employing linear input-output models.

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2015.12.121



Jinyao Yan et al. / [FAC-PapersOnLine 48-28 (2015) 178—183 179

static nonlinear structure in a LTTiP model. The most chal-
lenging problem in an identification problem is ordinarily
the determination of the model structure. Second, in spite
of many interesting and beneficial features of set-bounding
algorithms, the information inherent in set solutions has
not been extensively researched for potential exploitation.
This work uses measures of model quality reflected in set
solutions for guidance in the selection of models. This is
accomplished through evolutionary strategies with fitness
measures derived from the set solutions. Accordingly, tech-
nique simultaneously solves the model structure identifica-
tion and parameter-estimation problems, in the presence
of unknown noise scenarios.

2. IDENTIFICATION FRAMEWORK

In the present approach, the parameter estimation task
uses set-theoretic analysis of the data to deduce feasible
sets of solutions in light of certain model assumptions.
SM algorithms, as described in Section 1, provide sets of
feasible parameter vectors rather than the single point esti-
mates of conventional estimators. This is achieved through
successive refinements of an initial solution set, consistent
with @ priori constraints on the signal or system model.
In the present work, measurable set solution properties are
used to assess the viability of nonlinear regressor functions
that compete for “survival” as components of the model
(Yan et al., 2013, 2014). Specifically, we describe an evolu-
tionary approach to the selection of nonlinear regressors.
A very significant advantage of the use of a SM algorithm
is the lack of need for assumptions about stationarity or
distributional characteristics of the disturbances.

Consider a single-input—single-output discrete-time system
with input x and output y, each typically assumed to
belong to some well-behaved space, X C R” (e.g., £5). Let
Fg « X — X denote a continuous system operator mapping
x to y, which is parametrized by a real vector 8 € P C R€,

y=Fo(z). (1)
The system is said to be linear-in-parameters if, for any
z € X, for all 6,0’ € P, and for all a,a’ € R,

F (z) = aF,(z) + «'F,, (2). (2)

ab+a’6’
The internal processing of the system is based on a
subset of a candidate set of nonlinear regressor functions,
=, = {pq}, of size |2, |. Each regressor is a mapping
g « RTaT5a — R operating on a set of r, past and present
system inputs, and s, past outputs. The LTIiP observation
model, Qg, ., for t € Z, is given by

Q
@)0*74P* : y[t] = Z Qq*%* (xt—ooa yt_ioé) + 6*[t]
q=1

def

3)

03‘10* (xt—ooa yi*o})) + 6*[t] )
with 0, € ¥, and e, € R” an error sequence (characterized

below) representing uncertainties in the model. The “x”
subscript indicates a “true,” but unknown, quantity asso-

ciated with the observation model.> The arguments, z* __
and yt:oi, of the regressor signals ¢, (or vector ¢) indicate

3 The index q enumerates the elements of the set Z, so the functions
in (3) should be indexed as @gq;x,7 = 1,...,Q, but we use the slightly
abusive notation @g« for simplicity. It is to be understood that ¢qx«
is the ¢'? element selected from =y, rather than element g of =,.

that a finite number of elements are selected from the sub-
sequences {...,z[t —1],z[t]} and {...,y[t —2],y[t — 1]}
by each ¢, for processing at time t. For conservation of
space, we define the vectors of signal samples,

: t
vector of r, inputs from z° ,

def
uglt] = | and s, outputs from y' L used by |, (4)
Pgx at time ¢
and the matrix U,[t] = [w1.[t] u2:[t] - -+ ug«[t]]. Given
observations of  and y sufficient to compute outputs on
time interval t = 1,2,...,T, we pose an estimation model
as a function of the parameters and regressor signals,
Q
. def AT
Me,cp . yp (t7 0, (P) = Z‘%‘Pq ('u’q[t]) é 0 (10 (U[t}) ’ (5)
q=1

in which each ¢, is drawn from the set =, (see footnote 3),
0 € P, and the wu,[t] and UJt] are defined similarly to
(4). The superscript on y? connotes “prediction,” as this
estimation model corresponds to the classical prediction-
error method of Ljung (1999). If the observation equation
is modeled stochastically, and & {e.[t]} = 0 for each t € Z,
where € {-} denotes the expected value, then

e{ult)| 0.0, } =070, (w.lt) =v” (t[6.,0.) . (6)

where the “conditioning” notation ( -~-{0*,<p*) is used
in a deterministic function merely to emphasize that
the conditioning quantities are to be treated as fixed
values. Thus, given “true” parameters and regressors, the
prediction sequence will represent the minimum mean-
square-error (MMSE) estimate of the observed sequence.
That is, y? (¢, 0, ¢) is the MMSE predictor of the sequence
produced by Qg, , . The prediction residual sequence
associated with the general estimation model Mg, is

e(t,0,p) =ylt] —y" (t,0,¢)
=(0.—0)" ¢, (U.[t]) +e.lt] (7)

+0" [, (UL[1]) — ¢ (U[1)]
indicating error components due to the possible misad-
justment in the parameter estimates as well as the pos-
sible improper selection of regressor functions. For “true”
parameters and regressor signals, eq. (7) reduces to

e(t]|0="0.0=0,)=cll, (8)
the asymptotic best-case residual.

To concomitantly find the model structure and parameter
estimates, the regressor set is chosen according to an evo-
lutionary view of the selection process. The parameters are
identified using the set-theoretic approach which supports
evolution by contributing model fitness measures.

3. SET-THEORETIC EVOLUTIONARY ALGORITHM
8.1 FEwvolutionary Model Selection

In the present formulation, a LTTiP model is an “ organism”
with a single “chromosome.” In contrast to the complex
chemical structure of chromosomes in living cells, the
LTIP chromosome is a simple, finite, binary sequence
in which each bit indicates the presence or absence of
a particular “gene.” A binary “1” represents a region of
“coding DNA” along the model chromosome, while a “0”
represents “non-coding DNA.” Whereas the information in
a biological gene is encoded in its sequence of nucleotides,
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