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A B S T R A C T

The paper presents a solution to economic dispatch (ED) problems with non-convex, non-smooth fuel cost
functions, which characterize practical generating units. A method involving a unified semidefinite program-
ming (SDP) formulation of different ED problems through cost function decomposition was presented. The so-
lution of the resulting rank-relaxed SDP problem was refined to achieve the rank constraint using the method of
convex iteration and branch-and-bound technique. The SDP method was investigated on some test problems in
the literature. The results showed that the SDP method compared favorably with other methods, and can effi-
ciently solve non-convex and non-smooth ED problems.

1. Introduction

The general economic dispatch (ED) problem involves optimum
utilization of the capacities of committed generating units with the goal
of minimizing the cost of satisfying total load demand and system
constraints. Apart from various fixed costs, the cost of generation is
tightly linked with fuel cost. Consequently, the problem is posed as an
optimization of an objective function of fuel costs. A practical ED
problem is characterized by non-convexity and non-differentiability in
the objective and constraint functions. This is usually simplified as a
convex quadratic fuel cost function which fails to capture various
practical effects exhibited in the actual operation of power generating
units. Solutions obtained in this situation often underestimates the
optimum operating condition. In order to account for practical oper-
ating conditions, the objective function should incorporate effects such
as multiple fuel options, valve point loading and combined cycled co-
generation in the operation of power plants. Additionally, the con-
straints should account for prohibited operating zones (POZs), ramp-
rate limits and non-convex equality forms. These effects complicate the
ED problem and result in multiple local optimal solutions.

1.1. Related work

Several methods have been proposed to solve the ED problem in-
cluding the lambda iteration [1], the base point and participation factor

method [2], and gradient methods [3]. These methods have the
drawback of slow convergence to a solution. The dynamic program-
ming method proposed in [4] has the attraction of being indifferent to
the shape of the cost function but suffers the “curse of dimensionality”
[5]. Various heuristic and evolutionary approaches have also been
considered to solve the ED problem, among which are the genetic al-
gorithm (GA) [6], particle swarm optimization (PSO) [7,8], evolu-
tionary programming (EP) [9] and group search optimizer [10]. These
methods enjoy ease of implementation and indifference to the shape of
the cost function. However, their stochastic nature does not allow a
guaranteed global optimal solution. Multiple runs are required to cap-
ture a range of results which are reported statistically.

Another approach, which has gained increased popularity in solving
various power system optimization problems, is semidefinite pro-
gramming (SDP); a convex optimization method [11–19]. Most opti-
mization problems in power systems have polynomial objective func-
tions and constraints [20] and can be formulated as a semidefinite
program with addition of non-convex constraints, most of the time,
rank constraints. Since they are generally non-convex, finding a direct
solution can be somewhat difficult. The semidefinite programming
(SDP) relaxation method simplifies and allows such problems to be
solved by convex optimization techniques [16], usually through the
provision of an easily computable lower bound of the minimum value.

The relaxation techniques used by SDP has been very successful because
the relaxed problem, under suitable rank conditions, is guaranteed to have a
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global optimum solution in polynomial time, which is not achieved by other
methods [14]. Furthermore, while heuristic approaches depend on tuning
several parameters to obtain desirable outcome, SDP does not have such a
requirement [21]. Finally, the same optimal solution is achieved irrespec-
tive of the number of runs of the algorithm and this obviates the need to
report results in statistical average terms.

1.2. Our contribution

Previous studies that use SDP to solve stand-alone ED problems (or
their multi-objective formulations) have been limited to problems with
convex and smooth fuel cost functions (e.g. [11,16,17]) and non-convex
constraint set (e.g. [18]). Operational features of practical power plants
that make the fuel cost objective function non-convex and non-differ-
entiable were not considered. In this paper, non-convexities and non-
differentiability in the objective cost function are addressed through a
unified formulation that uses the decomposition method, and solved
iteratively as convex sequences.

The paper is organized as follows. Section 2 discusses various
practical features of generating units and how these affect the fuel cost
objectives of the ED problem for such units. The decomposition of the
problem induced by the non-differentiability and non-convexity in the
cost objectives is considered, along with a unified representation of all
such features, in Section 3. Section 4 contains an introduction of some
theoretical frameworks in semidefinite programming such as semi-
definite relaxation, handling of rank constraint by convex iteration and
branch-and-bound technique for rank-constrained SDP. Section 5 shows
the decomposition of the unified ED problem and the SDP relaxation of
the resulting problem. In Section 6, the test systems considered for the
evaluation of the proposed method and the SDP solvers used are pre-
sented. Section 7 presents the various results, and the comparative
analysis of the result with those of other methods presented in the lit-
erature. Finally, we conclude in Section 8.

2. Non-convex economic dispatch models

The economic dispatch problem can be formulated as follows:

∑=
=

C P C Pminimize ( ) ( )
i

p

i i
1 (1a)

∑ = + = …
=

P P P P P P Psubject to: ( ), [ , , ]
i

p

i D L p
T

1
1

(1b)

≤ ≤ = …P P P i p, 1, ,i i i
min max (1c)

where P, the decision variable, is the vector of power outputs, C(·) is the
fuel cost objective, Pi

min and Pi
max are the respective minimum and

maximum power generation limit of the i-th unit. The transmission loss,
PL(P), can be calculated using the Kron's loss formula:
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where Bij, Bi01 and B00 are B-coefficients.
In the conventional handling of the ED problem, the cost function is

represented by quadratic polynomial functions [22]. The total fuel cost,
C(P), is expressed as
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where Pi is the real power output of the i-th generating unit, and ai, bi,
and ci are the corresponding fuel cost coefficients.

In order to complete the practical model considered in this paper,
three features of thermal power generation units that introduce non-
convexity and non-differentiability into the objective cost function are
now described.

2.1. Co-generation plant fuel cost

A combined cycle co-generation plant (CCCP) consists of one or
more gas and steam turbines interconnected to generate electric power.
Different configurations of the gas and the steam turbines therefore lead
to different cost functions over regions of the unit's range of operation.
The fuel cost characteristic for the CCCP unit with q number of con-
figurations (see Fig. 1) is non-smooth and non-differentiable [2] and is
given as [23]:
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where χij is the power output of unit i when it switches from config-
uration j to j + 1.

2.2. Multiple fuel option

Generation units may operate on multiple fuel sources and using a
particular fuel for a range of power output may be economically ad-
vantageous. In this case the cost function is defined to reflect the pos-
sible mix of fuel choices by representing it as several piecewise convex
quadratic functions. This makes the determination of the most eco-
nomical fuel type complicated as the ED problem is now non-con-
tinuous [24]. The fuel cost function for q fuel types can be expressed as
[25]:
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where Pi denotes the output of unit i which can be in one of the q
regions defined by the fuel types (see Fig. 2). Pimin and Pimax define the
respective lower and upper limits of power, Pi, generated by each of the
units in operation.

2.3. Valve point loading effect

Large steam turbine generators have a number of steam admission
valves that are opened in sequence to achieve increased output of the
unit. Upon initial opening of a valve, the throttling losses increase ra-
pidly and the unit's incremental cost rate rises suddenly [26]. The fuel
cost function for a unit i with valve point loading is modelled by adding
a recurring rectified sine component to the basic quadratic cost function
(as shown in Fig. 3) [27]:

Fig. 1. Fuel cost characteristic for CCCP unit.
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