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Abstract: Adaptive inverse control, proposed by Bernard Widrow, is mainly based on the well-known 
least mean square (LMS) algorithm. The LMS is a stochastic gradient algorithm under the minimum 
mean square error (MSE) criterion, which performs well for linear and Gaussian systems. However, its 
performance will become poor when signals are non-Gaussian, especially when systems are disturbed by 
impulsive noises. In this work, in order to improve the robustness of the adaptive inverse control against 
impulsive noises, we propose a new adaptive inverse control method, which is based on the recently 
developed maximum correntropy criterion (MCC) algorithm. The MCC algorithm aims at maximizing 
the correntropy between the model output and the desired response. Since correntropy is a nonlinear 
similarity measure that contains higher-order statistics of the signals and is insensitive to large outliers, 
the proposed method can achieve desirable performance in impulsive noise environments. Theoretical 
results on optimal solution and convergence are derived. Simulation results are also presented to 
demonstrate the superior performance of the new method.  

Keywords:  Correntropy; adaptive inverse control; convergence analysis; robustness 


1. INTRODUCTION 

Adaptive filtering techniques are widely used in many diff-
erent fields of signal processing, such as channel equalization, 
echo cancelation, system identification etc. In particular, 
adaptive filtering algorithms have been successfully applied 
in system control, and a novel control strategy called adaptive 
inverse control, was proposed by Bernard Widrow (Widrow 
and Stearns, 1985, Widrow and Walach, 2008). The basic 
idea of adaptive inverse control is to learn an inverse model 
as the controller to achieve adaptive control of unknown 
systems (or plants). The study on adaptive inverse control 
was initiated in the 1960s and at the first IFAC workshop a 
paper on adaptive inverse control including adaptive plant 
disturbance cancelling was presented by Widrow (Widrow 
and Walach, 1984). Later, several publications in neural 
network community focused on nonlinear adaptive inverse 
control (Psaltis et al., 1988, Hunt and Sbarbaro, 1991, Hunt et 
al., 1992). Recently, an adaptive inverse control of neural 
spatiotemporal spike patterns was also proposed by Lin Li (Li 
et al., 2013). Adaptive inverse control is easy to understand 
and use in practice for a person with some background 
knowledge about adaptive filtering. The least mean square 
(LMS), a well-known stochastic gradient algorithm under the 
minimum mean square error (MSE) criterion, is in general a 
basic adaptive filtering algorithm used in adaptive inverse 
control, due to its simplicity, efficiency, and strong tracking 
capability. The LMS performs well in most situations 
especially when the unknown system is linear and Gaussian. 
However, the performance (e.g. convergence speed, stability, 
steady-state misadjustment) of the LMS may degrade 
seriously when plants are disturbed by non-Gaussian noises, 
especially in the presence of impulsive noises with a heavy-
tailed distribution (Parzen, 1962, Singh and Principe, 2012).  

Recently, a novel similarity measure between two random 
variables, called correntropy, was proposed (Santamaría et al., 
2006, Liu et al., 2007). The correntropy can be used as a cost 
function in robust regression or adaptive filtering, as it is a 
localized similarity measure, particularly with strong 
robustness against impulsive noises (or large outliers) (Liu et 
al., 2007, Chen and Principe, 2012). Under the maximum 
correntropy criterion (MCC), an adaptive filter can be 
updated such that the correntropy between the filter output 
and the desired response is maximized (Singh and Principe, 
2009, Zhao et al., 2011). The steady-state convergence 
performance of adaptive filtering under MCC has been 
studied (Chen et al., 2014). In the present paper, we apply the 
correntropy to adaptive inverse control and propose the 
Filtered-X MCC algorithm. The new adaptive inverse control 
can achieve desirable performance in the presence of non-
Gaussian impulsive noises. The convergence issues of the 
Filtered-X MCC algorithm have also been studied.  

The rest of the paper is organized as follows. In section 2, we 
give a brief introduction about the MCC. In section 3 we 
develop the Filtered-X MCC algorithm and study its 
convergence problem. In section 4, we present simulation 
results to demonstrate the performance of the new algorithm. 
Finally, conclusion is given in section 5. 

2. BRIEF REVIEW OF MCC  
A generalized correlation function, called the correntropy, is 
defined as a localized similarity measure between two 
random variables X and Y (Santamaría et al., 2006, Liu et al., 
2007):  

V (X,Y) E[ (X Y)]= ( ) ( , )XYx y dF x y               (1) 
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where E denotes the expectation operator, ( ,y)XYF x denotes 
the joint distribution function of X and Y, and ( )  is a 
translation-invariant Mercer kernel with bandwidth . In this 
paper, we adopt the following Gaussian kernel 

2
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Essentially, the correntropy represents a squared L2 distance 
in kernel space, as one can derive 
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where ( )  denotes a nonlinear mapping induced by the 
kernel ( )  , and denotes the corresponding feature space 
(i.e. the reproducing kernel Hilbert space).  

Fig.1 shows a typical scheme of adaptive filtering under 
MCC criterion, where the filter weights are updated such that 
the correntropy between the filter output y and the desired 
signal d is maximized. In most practical applications, the 
correntropy should be estimated from a finite number of 
samples. Thus, the cost function for adaptation is  
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where 1{ }N
i iy  and 1{ }N

i id  are, respectively, the filter outputs and 
desired signals with N samples ( N is the sliding data length 
for online learning scenarios). 

Assume that the weight vector of the adaptive filter is kW  at 
the thk  iteration. The MCC algorithm can be expressed as 

1 Jk k MCCW W                                   (5) 

where  denotes the step size parameter, and JMCC denotes 
the gradient of JMCC with respect to W . To simplify the 
computation and improve the tracking capability, one can 
set 1N   and obtain the following stochastic gradient based 
MCC algorithm (assuming an FIR adaptive filter):  
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where T
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above algorithm can also be rewritten as 
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 . Thus the MCC algorithm (7) can 

be viewed as an LMS algorithm (Widrow and Stearns, 1985) 
with a variable step size k . When a large error occurs 
(usually caused by an impulsive noise), the step size k will 
approach zero (see Fig.2). This implies that the MCC 
algorithm has a strong outlier rejection capability. As  , 
the MCC algorithm reduces to the LMS.  
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Fig. 1.  Adaptive filtering under MCC criterion 
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Fig. 2.  k as a function of ke with different kernel widths 

3. FILTERED-X MCC ALGORITHM 

3.1  Filtered-X MCC  

Adaptive inverse control is a relatively ingenious control 
method, which seeks an inverse model of the plant as its 
controller. With an adaptive filtering algorithm, an inverse 
model of the plant is learned and takes the series connection 
with the plant as a controller to control the dynamic response 
of the plant. The feedback in adaptive inverse control is some 
kind of local feedback, which is used to alter the model 
parameters to control primary loop’s signal flow. So it is 
quite different from the conventional feedback control 
approach and belongs to open-loop control in some sense. A 
compromise generally exists between good dynamic response 
and good disturbance control in traditional feedback 
technology, but adaptive inverse control is a totally different 
one in that it separates the control process into two parts 
relatively independently: 1) the control of plant dynamic and 
2) the control of plant disturbance. By this way the problem 
becomes simpler and easier to solve. 

There exist some alternative configurations for adaptive 
inverse control realization and the Filtered-X MCC algorithm 
proposed in this work, inherits the fundamental structure 
from Filtered-X LMS algorithm, a very practical adaptive 
inverse control method (Widrow and Walach, 2008). Fig.3 
depicts the configuration of the Filtered-X MCC algorithm. 
The upper part in Fig. 3 is to learn a model P̂(z) of the 
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