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A B S T R A C T

In this paper, both thermal and electrical performance evaluations of a lithium-ion battery pack using real world
drive cycles from an electric vehicle (EV) are presented. For the experimental measurements, a data logger is
installed in the EV, and the real world drive cycles are collected. The EV has three lithium-ion battery packs
consisting of a total of 20 battery modules in series. Each module contains six series × 49 parallel IFR 18650
cylindrical valence cells. The reported drive cycles consist of different modes: acceleration, constant speed, and
deceleration in both highway and city driving at 2 °C, 10 °C and 17 °C ambient temperatures with all accessories
on. Later, the same drive cycles are conducted in an experimental facility where four cylindrical lithium-ion cells
are connected in series, and both electrical and thermal performances are evaluated. In addition, the battery
model is developed using artificial neural network, which is validated with the real world drive cycles. The
validation is carried out in terms of voltage, state of charge (SOC), and temperature profiles for all the collected
drive cycles. The present model closely estimates the profiles observed in the experimental data. Moreover, with
this study, the mathematical function for the average temperature, SOC, and voltage prediction are developed
with weights and bias values.

1. Introduction

Automotive manufacturers are under extreme pressure to improve
fuel economy and reduce emissions of their cars. In conjunction with
this, they have to create and apply recent advancements to meet reg-
ulations. Electric vehicles (EVs), along with fuel cell vehicles (FCVs)
and hybrid electric vehicles (HEVs), are seen as the answer to energy
and environmental issues and they are more energy proficient [1,2]. In
EVs, since the electric motors and inverters are utilized in the drive
systems, in comparison with internal combustion engines, they have
real points of interest. For example, fast torque reaction and control
over every wheel [3]. The heart of EVs is the battery or battery pack.
Among accessible technologies, the lithium-ion battery plays a key part
in the improvement of EVs, HEVs, and PHEVs [4] as a result of their
broad use because of: (1) high specific energy and power densities
[5,6]; (2) high nominal voltage and low self-discharge rate [7]; and (3)
long cycle-life and no memory effect [8]. However, lithium-ion bat-
teries must be precisely observed and managed (electrically and ther-
mally) to avoid safety (inflammability) and performance related issues
[9,10].

This section gives a brief overview of lithium-ion battery structure,
components and types. A lithium-ion battery cell usually has five dis-
tinctive layers, in particular: the negative current collector, negative
electrode (anode), separator, positive electrode (cathode), and positive
current collector. There are generally four sorts of positive electrode
materials [11]: (a) a metal oxide with layered structure, for example,
lithium cobalt oxide (LiCoO2/LCO) [12]; (b) a metal with a three di-
mensional spinal structure, for example, lithium manganese oxide
(LiMn2O4) [13]; (c) lithium nickel manganese cobalt oxide (Li-
NiMnCoO2/NMC); and (d) a metal with a olivine structure, such as li-
thium iron phosphate (LiFePO4/LFP) [14]. The anode is generally made
of graphite or a metal oxide. The electrolyte can be liquid, polymer or
solid. There are various types of lithium-ion batteries available such as
cylindrical, and prismatic. The prismatic batteries are used for high
capacity rating such as in automobiles [15].

In EVs and HEVs, the thermal management of lithium-ion batteries
is a tremendous challenge because of the dynamic utilization of the
battery cells and the extensive range of environments under which they
work [16]. In a high temperature environment, lithium-ion batteries
quickly degrade, while in a cold temperature environment, the power
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output and energy are reduced, which eventually brings about reduc-
tion of performance and driving range [17]. A typical temperature
range is between 20 °C and 40 °C [18] for lithium-ion batteries, and an
extended range is between −10 °C and +50 °C for their fair operation
[16]. There are two common types of cooling: (i) air cooling, and (ii)
water cooling. The water cooling option appears to be more compelling,
because of higher specific heat content contrasted with air cooling. It
occupies less volume, yet brings more complexities and high cost and
weight [19]. The temperature increase in a lithium-ion battery during
charging/discharging follows three processes: (1) the rate at which heat
is created inside the cell, (2) the rate at which heat conducts within the
cell to the outer surface, and (3) the rate at which heat is expelled from
the cell's external surface to the environment. Heat dissipation to the
surrounding relies on the cell geometry and also the cooling system
performance [20]. Temperature estimations and the prediction of the
lithium-ion cell temperature are addressed by various papers including
analytical and numerical modeling [21,22].

Numerous numerical models have been developed to predict the
dynamic behaviors of batteries. An EV designer may use battery models
for sizing the required battery and predict the battery discharge. Battery
models are likewise utilized for on-line self-learning performance and
SOC estimation in battery thermal management system (BTMS)

[23,24]. There are numerous papers in the open literature available for
battery thermal modeling, utilizing diverse methodologies. For ex-
ample, artificial neural network [21,22,25,26], finite element model
(FEM) [27] or lumped parameter model (LPM) [28], the linear para-
meter varying (LPV) model [29], or the partial differential equation
(PDE) model [30], and the power train system analysis toolkit (PSAT)
or Autonomie [31]. Some more studies on SOC estimation based on
drive cycles are also accessible in the open literature [32,33]. Utilizing
smart tools, for example, artificial neural networks (ANNs) has ended
up being effective tools for exact estimating of vehicle pace profile of
moving vehicle. A neuro-genetic predictive tool was produced for
predicting the short-term traffic activity on road [34]. Genetic algo-
rithm (GA) was also additionally utilized for the both optimization and
developing of ANN architectures for short-term traffic flow prediction
[35]. An ANN in view of an exponential smoothing strategy was pro-
duced to come up with a precise intelligent tool for forecasting the
traffic flow, and later confirmed the realness of their system by re-
peating the same simulations using a Levenberge-Marquardt ANN (LM-
ANN) [36]. In another study, a neural network for real-time vehicle
speed predictions showed the legitimacy of the strategy utilized [37].
Here, we used the same methodology called ANN for drive cycle
modeling. Artificial neural networks are generally sorted out in layers

Nomenclature

e e is the number also called as Napier's Number and its
approximate value is 2.718281828

H to Hk k
1 8 Hidden layer neuron from 1 to 8

I Current [A]
i Index of hidden layer nodes
j Index of input layer nodes
k Index of time interval
l Index of output layer nodes
NH Number of neurons in the hidden layer
NI Number of neurons in the input layer
No Number of neurons in the output layer
t Time [s]
Wi,j Weights of connection between hidden layer neuron and

output layer neurons
x Weighted sum of inputs from the preceding layers
β1 to β8 Bias of hidden layer neurons from 1 to 8
Γ Average temperature of all 20 module
θk Time recorded from EV in second
μ Bias associated with the output layer neuron
ξk Battery current recorded from EV in Amp
π Pi
σ (.) Activation function
ωi,j Weights of connection between input layer neuron and

hidden layer neurons
∞ Infinity

Subscripts

act Actual
chg Charge
dis Discharge
int Internal
sim Simulated
oc Open circuit
out Output

Superscripts

T Transpose of a matrix

x power value of the exponent e

Acronyms

ANN Artificial neural network
BC Boundary condition
BMS Battery management system
BTMS Battery thermal management system
C Capacity
CC Constant-current
CV Constant-voltage
DAQ Data acquisition
EV Electric vehicle
FCV Fuel cell vehicle
IFR 18650 “I” stands for Li-ion rechargeable, “F” stands for the

element “Fe” which is Iron, “R” just means the cell is
round, 18650 means 18 mm diameter and 650 means
65 mm height

LiCoO2 Lithium cobalt oxide
LiMn2O4 Lithium manganese oxide
LiNiMnCoO2 Lithium manganese cobalt oxide
LiFePO4 Lithium iron phosphate
LCO Lithium cobalt oxide
LFP Lithium phosphate
LPM Lumped parameter model
LPV Linear parameter varying
LM-ANN Levenberge–Marquardt artificial neural network
MSE Mean square error
NN Neural network
NMC Lithium manganese cobalt oxide
OCP Open circuit potential
PSAT Power train system analysis tool kit
PHEV Plug-in hybrid electric vehicle
PDE Partial differential equation
R Regression
RS-232 Recommend standard number 232
SOC State of charge
TDI Load box for battery testing
UQM Power phase motor developed by UQM
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