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A B S T R A C T

This paper applies the statistical testing theory to examine the validity of different load parametric models.
Traditionally measurement-based static load modeling has been performed based on a single parametric model.
Commonly utilized models include: ZIP (constant-impedance–constant-current–constant-power) model, ex-
ponential model, and frequency component adjusted ZIP/exponential models. It has been conjectured that the
models making use of the frequency feature should be better compared to the ones purely based on the voltage
component. However, there has not been any theoretical-based justification to confirm this claim. It is a goal of
this paper to provide a formal method for verifying this claim by employing the theory of statistical testing for
correct parametric model specification. In particular, a class of F-tests for checking the correctness of the specific
load model is employed. Our methodology is verified on the real phasor measurement unit (PMU) data de-
scribing a radial load in the Manitoba Hydro power system. The obtained results confirm the usefulness of the
frequency component based models.

1. Introduction

Load modeling plays an important role in stable operation of power
systems. Load models are used in power flow and transient stability
studies for planning and operation of power systems. It is well known
[1] that the results of a transient stability analysis depend on the load
models used. Therefore, it is important to model the loads as close as
possible to the actual load. Modeling of loads is complicated because
loads connected to a typical bus are composed of a large number of
devices often with ever-changing characteristics. The composition of
loads often has a complicated dependence on many factors including
time, season, weather condition, and energy prices, just to name a few.
Moreover, one should take into account the time-varying nature of the
load systems as the load signals such as voltage, frequency, current are
non-stationary processes.

Typical approaches for load modeling can fall into two categories:
component-based methods [1–3] and measurement-based methods.
Furthermore, the measurement-based approach can be based on static
modeling, dynamic modeling, or the combined static–dynamic mod-
eling. The following is a popular polynomial static model describing the
dependence between the voltage (V) signal and the powers: the real
power – P and the reactive power – Q:

= + + +P a V a V a ε,1
2

2 3 (1a)

= + + +Q a V a V a ξ ,4
2

5 6 (1b)

where ε, ξ are modelling errors regarded to be random variables with
zero mean and finite variance.

Another commonly used load model is the exponential model of the
following form:

= +P a V ε,a
1 2 (2a)

= +Q a V ξ.a
3 4 (2b)

The above models assume that the output variables, i.e., P, Q are
only influenced by the voltage signal V. In more refined models P, Q
may depend both on the voltage V and the frequency f. This leads to the
following extended models corresponding to (1) and (2)

= + + + − +P a V a V a a f f ε( )(1 ( )) ,1
2

2 3 4 0 (3a)

= + + + − +Q a V a V a a f f ξ( )(1 ( )) ,5
2

6 7 8 0 (3b)

and

= + − +P a V a f f ε(1 ( )) ,a
1 3 0

2 (4a)

= + − +Q a V a f f ξ(1 ( )) ,a
4 6 0

5 (4b)

where f0 is the reference frequency being 60 Hz in the North American
power system. The aforementioned models are defined up to the un-
known coefficients {ai} that need to be determined from the available
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data.
It is also worth mentioning that the model in (1) is called the ZIP

model, since the different terms of the formula in (1) correspond to
constant impedance (Z), constant current (I) and constant power (P).
Model (2) is commonly referred to as the exponential model. Models
(3), (4) are the extended ZIP and exponential models, respectively.
They have correction terms depending on the additional input variable
being the frequency component. Note that if a4 = a8 = 0 then the
model in (3) reduces to the simpler model in (1). An analogous re-
duction applies to the model in (4).

The exponential model in (2) has been examined in [4,5], whereas
in [6] the frequency-dependent models in (3), (4) have been evaluated.
Besides the aforementioned models there have been other, less com-
monly used in practice, modelling approaches that can be regarded as
some modifications of the above introduced popular models. For in-
stance, the static model in [7] can be viewed as an intermediate model
between models (1) and (3), while the EPRI LoadSyn program [8] uses
a model with the real power part being a linear combination of (2a) and
(4a), and the reactive part being a linear combination of the two models
in (4b) with different parameters [8]. The latter approach has been also
applied in [2,8]. Composite load models are the extension of the static
models by allowing the dynamic part to be involved. Their static parts
are as in (1)–(4), whereas the dynamic part is connected in a certain
block-oriented structure. For instance, in [9], the models in (1), (2) are
combined in the parallel structure with a dynamic part represented by
an induction motor. These overall composite models are referred to as
the ZIP-induction motor (GZIP-IM) load model and the exponential-
induction motor (Exp-IM) load model. Similarly, in [10–14] a combi-
nation of (1) and the motor dynamic part has been taken into con-
sideration. On the other hand, in [11] a composite model with the
combination of (3) and the motor dynamic part has been utilized. Be-
sides, a dynamic model can be extended from the basic form of static
model through other approaches. For instance, the so-called “ex-
ponential recovery model” in [15] provide such a means.

Recently, artificial intelligence methods [16,17] as well as Hidden
Markov models [18] have also been applied in load modeling.

In this paper, the basic static load models defined in (1), (2), (3),
and (4) are examined. The problem of fitting, i.e., estimating unknown
parameters of these models has been addressed in the aforementioned
references. In practice, however, one needs to decide which model gives
the most significant fit to the observed data. In fact, every loading
modeling problem should be equipped with the proper model check.
Hence, the principal goal of this paper is to consider testing procedures
for such hypotheses. A formal statistical test is designed that is able to
choose either the simple models in (1), (2) or the more complex models
in (3), (4). These are nested models and the version of the F-test to
verify the posed hypotheses is applied. The F-test is the general strategy
for verifying the hypothesis that the proposed restrictive model fits the
data well compared to the unrestricted larger model [19,20]. The test is
based on the relative distance in residual sum of squares between the
restrictive model and the full model. The developed methodology is
then applied to the real PMU data representing the observations of a
radial load in the Manitoba Hydro power system. Our findings are that
for this particular data the frequency component is essential for the load
modeling problem, i.e., the complex models in (3) and (4) are more
preferable than the simple ones. Due to the random nature of the ob-
served data this conclusion should be interpreted in the statistical fra-
mework, i.e., with the high probability of acceptance one can conclude
that the models with the frequency component better fit the given data
set. It is also clear that the developed methodology can be used by
power engineers to select the appropriate load model that is suitable for
a particular application.

The rest of the paper is organized as follows. Section 2 gives the
description of the problem of parametric nested models specification
and the corresponding test statistics. The problem of load models fitting
under the hypotheses is examined in Section 3. Section 4 implements

the introduced methodology to the real PMU data derived from the
Manitoba Hydro power system. Concluding remarks are presented in
Section 5.

2. Model specification and F statistics

In the regression analysis one obtains the data set Dn = {(X1, Y1),
…, (Xn, Yn)}, where the component Yi is the response variable that we
try to explain from the values of the input variables {Xi}. The postulated
model between Xi and Yi is of the parametric form

= + = …★Y m θ ε i nX( ; ) , 1, , ,i i i

where {εi} is the random non-observed noise process that is assumed to
be a sequence of independent and identically distributed (i. i. d .)
random variables with variance σ2. The nonlinearity m(x;θ) is the
known function except for the p-dimensional parameter θ, where θ★ is
the true value of θ. If the model m(x;θ) is correctly specified then one
can estimate θ★ by minimizing the least-squares criterion, i.e.,

∑= −
=

S θ Y m θX( ) ( ( ; )) .
i

n

i i
1

2

(5)

The resulting least-squares estimate θ̂ can converge to θ★ under very
general regularity condition on the nonlinearity m(x;θ), see Chapter 12
in [20] for details. Moreover, if the noise {εi} is normally distributed
then the θ̂ is also the maximum-likelihood estimator that reveals some
further efficiency properties [20]. In practice, one is confronting with
several alternative regression models and would like to choose the
model that explains the data the best. Hence, let

= + = …★H Y m θ ε i nX: ( ; ) 1, , ,i i i0 0 0 (6)

represents the restricted model, where ∈★θ Rp
0 1. On the other hand

= + = …★H Y m θ ε i nX: ( ; ) 1, , ,i i i1 1 1 (7)

describes the alternative full model, where ∈★θ Rp
1 . These are nested

models as p= p1 + p2, some p2 ≥ 0 and if p2 = 0 then =★ ★θ θ1 0 and
consequently =★ ★m θ m θx x( ; ) ( ; )0 0 1 1 . Hence, for the nested models, the
model under H0 is the special case of the model under H1.

An important example is the following linear null hypothesis model

= + + ⋯+ + = …− −H Y a a X a X ε i n: , 1, , ,i i p p i i0 0 1 1 1 1,1 1 (8)

where = … −( )X XX 1, , ,i i p i
T

1 1,1 is the p1-dimensional vector of the input
variables. The alternative full linear regression model is

= + + ⋯+ + ⋯+ +− − − −H Y a a X a X a X ε: ,i i p p i p p i i1 0 1 1 1 1, 1 1,1 1 (9)

for i = 1,…, n, where now Xi = (1, X1i,…, Xp−1,i)T is the p-dimensional
input vector. In this case the choice between the two competitive
models is equivalent to testing the null hypothesis H0 that the last
p2 = p− p1 of the ai's are 0, i.e., ai = 0 for i= p1, …, p− 1.

The general approach for testing the nested nonlinear regression
hypotheses defined in (6) and (7) is based on the generalized likelihood
ratio test [20,21] that requires the evaluation of the log-likelihood ratio

p H
p H

Y
Y

log
( | )
( | )

,1

0

where p(Y|H0) is the joint density of the observed data Y = (Y1, …, Yn)
when the null hypothesis model in (6) holds. This density should be
conditioned on the input data (X1, …, Xn) if they reveal the random
nature. This is the case in our load model specification problem that is
examined in this paper. The same interpretation applies to p(Y|H1) for
the alternative model in (7). The explicit evaluation of the likelihood
ratio is generally difficult. If, however, one assumes that the noise
process {εi} is Gaussian then the direct calculation, see [20,21], yields
the so-called F-statistic

= − −
−

n p
p p

F (SS SS )
SS

,n
0 1

1 1 (10)
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