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a  b  s  t  r  a  c  t

The  article  discusses  an  algorithm  for a one-sided,  impedance-based  (transmission)  line fault  locator
using  line  topology.  Standard  one-sided  impedance-based  fault  locators,  included  in  the digital  protection
systems  [2–4,8]  compute  the  distance  to the  fault  using  the  symmetrical  components  of  line  impedance.
Section  5 demonstrates  that  this  method  of  determining  the  distance  to the  fault  exhibits  significant
inaccuracies  in  the  case  of a non-transposed  line.  The  designed  algorithm  eliminates  this  inaccuracy,
as  it computes  the  distance  to the  fault with  regard  to  impedance  of  corresponding  phase,  or  more
precisely  the  faulty  loop.  Moreover,  the algorithm  reflects  the  source  impedances  on  both  sides  of  the
line  and therefore  eliminates  or decreases  the influence  of  power  from  the  opposite  side  to determine
the  distance  to the  fault.

© 2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Information is critical to determine the distance to a fault (from
a particular substation), with the best possible accuracy (in case of
a short circuit on transmission line) as it impacts the time needed
to locate the fault and the duration of any overall transmission line
outage as well. While the “travelling wave system” (TWS) is cur-
rently the most accurate at locating a fault, an impedance-based
approach remains fundamental towards determining the distance
to the fault. There are economical (TWS is another investment and
must be installed on both sides of the line to ensure accurate mea-
surement) and technical considerations at play (TWS needs to have
precise time synchronization and it may  be knocked out of service
in the event of a transmission line fault).

Impedance-based fault locators are implemented in almost
every digital protection system. The main weakness of such a fault
locator algorithm is the assumption that the transmission line is
balanced, i.e. the line is completely transposed. It calculates the dis-
tance to the fault using the symmetrical (positive and zero sequence
impedance) components of line impedance [2,3] and does not con-
sider transmission line topology, i.e. different (unequal) impedance
of each phase, or more precisely each fault loop. Furthermore, the
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algorithms of certain vendors do not factor in the influence of the
power system [3].

The design of the fault locator algorithm described in this
article takes transmission line topology into consideration and
computes the distance to the fault with appropriate compensation
for the individual fault loop impedances. This method of calcula-
tion may  eliminate errors arising from the replacement of real,
non-transposed (unbalanced), transmission line parameters with
symmetrical components. The algorithm also factors in source
impedances and decreases inaccuracy introduced by resistance
faults when power is fed from both sides.

2. Transmission line

2.1. Series impedance of a transmission line

Series impedance of a three-phase transmission line, called Line
(Fig. 1), may  be determined using an impedance matrix ZLine [1,6]

ZLine =

⎡
⎢⎣
ZL11 ZL12 ZL13

ZL21 ZL22 ZL23

ZL31 ZL32 ZL33

⎤
⎥⎦ (1)

where ZLxx = RLxx + jXLxx – self-impedance of phase x; ZLxy =
RLxy + jXLxy – mutual impedance between phases x and y, ZLxy =
ZLyx .

In general, ZL11 /= ZL22 /= ZL33, ZL12 /= ZL13 /= ZL23.
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Fig. 1. Series impedance of the transmission line.
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Fig. 2. Completely transposed line.

This is due to the non-symmetric position of any phase (phase
wire) to the remaining phases and ground wire (or wires). Particular
examples are shown in Section 5.

Transmission line symmetrical components (positive and zero
sequence impedance – Z1Line , Z0Line) are as follows: [1]

Z1Line =
(
ZL11 + ZL22 + ZL33

)
−

(
ZL23 + ZL13 + ZL12

)
3

= R1Line + jX1Line

Z0Line =
(
ZL11 + ZL22 + ZL33

)
+ 2 ×

(
ZL23 + ZL13 + ZL12

)
3

= R0Line + jX0Line

(2)
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Fig. 3. Series impedance of a double-circuit line.

In case of a completely transposed line (Fig. 2), the series
impedance matrix is as follows [1]:

ZLineT =

⎡
⎢⎣
Zself Zmut Zmut

Zmut Zself Zmut

Zmut Zmut Zself

⎤
⎥⎦ (3)

where

Zself = ZL11 + ZL22 + ZL33

3
= 2  × Z1Line + Z0Line

3

Zmut = ZL12 + ZL13 + ZL23

3
= Z0Line − Z1Line

3

lLine – line length.
In the rest of the calculation, as in the case of the completely

transposed transmission line, we will consider every part of the
line transposed, i.e. the impedance of any part p is Zp = p × ZLineT.

In case of the parallel lines, called LineA and LineA′ (Fig. 3), it
is also necessary to take into consideration the mutual coupling
between the lines. Series impedance or more precisely the series
impedance matrix of a double-circuit line is as follows [7]:

(4)

where ZAA – self-impedance LineA,  matrix 3 × 3; ZA′A′ – self-
impedance, LineA′, matrix 3 × 3; ZAA′ – mutual impedance between
LineA and LineA′, matrix 3 × 3; ZA′A – mutual impedance between
LineA′ and LineA,  matrix 3 × 3, ZA′A = ZT

AA′ .
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Fig. 4. Completely transposed double-circuit line.
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