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a  b  s  t  r  a  c  t

The  method  of  characteristics  (MoC)  transforms  line  equations  into  ordinary  differential  equations,  and
the numerical  transient  solution  is typically  performed  through  discretization  in time  and  space.  There
exits  also  a version  of MoC  proposed  in the  literature,  in  which  the  discretization  in space  is eliminated  for
uniform lines.  This  has  the potential  to  render  the  MoC  faster  than  the  traveling  wave-based  models.  This
paper  examines  in detail  the  possibility  of  removing  spatial  discretization  and  extends  the  application
for  the  evaluation  of  transients  on cables  in  addition  to transients  on  lines.  It  has  been  demonstrated
that, although  removing  spatial  discretization  is  possible  by  introducing  certain  change  of  variables  and
approximations,  the  resulting  model  has  limited  numerical  precision  and may  show  numerically  unstable
behavior.  This  is principally  due  to the  approximation  error  introduced  by  the linearization  of  differential
equations,  necessary  to  obtain  a relationship  between  line ends.  The  paper  discusses  other  sources  of
numerical  errors and  shows  that  the line  needs  to be  subdivided  to improve  precision.

© 2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The most common transient solution method of lines is based
on traveling wave equations and obtained by transforming the
frequency domain equations into time domain. In the frequency
domain, lines and cables are characterized with two  frequency
dependent coefficients: the propagation function H and the charac-
teristic admittance Yc . The basic idea of the frequency dependent
models in Electromagnetic Transient Type (EMT-type) programs
is to use rational function approximations for these coefficients,
obtained by using fitting techniques, to allow efficient computation
of convolution integrals through recursive schemes. The Universal
Line Model (ULM) is the prevailing approach [1]. The recent effort
in this field is on the passivity enforcement of models [2], improve-
ment of numerical stability [3,4], enforcement of symmetry [5] and
real time implementation [6]. Alternative models include the fre-
quency dependent line model [7], obtained with the assumption
of constant transformation matrices, and the frequency dependent
cable model proposed to deal with systems having large number of
coaxial cables [8].

Another class of transient solution techniques is based on the
application of method of characteristic (MoC). This technique trans-

∗ Corresponding author.
E-mail address: i.kocar@polymtl.ca (I. Kocar).

forms the partial differential equations (PDEs) into sets of ordinary
differential equations (ODEs) directly in time domain by using char-
acteristic curves. It was successfully applied to study corona on
transmission lines with constant parameters [9]. Further research
efforts not only focus on the frequency dependence of parame-
ters but also deal with non-linear [10], external field-excited [11]
and non-uniform transmission lines [12]. The MoC  requires spatial
discretization in addition to discretization in time. Therefore, the
solution is inefficient for uniform lines compared to traveling wave
models such as ULM. On the other hand, an alternative solution pro-
cedure has been proposed for MoC  to remove spatial discretization
for uniform lines by using the relationship on the propagation speed
of modal waves along characteristic curves [13,14]. This approach
seems promising since the removal of spatial discretization has the
potential to render the technique very efficient due to the following
key advantages:

- As opposed to two convolutions for each end in traveling wave
models only one convolution is required

- Traveling wave models require the fitting of H and Yc . In the MoC,
however, the series impedance elements are needed to be fit,
which are smoother.

This paper first presents a fitting procedure for series impedance
elements and then contributes important clarifications on the
application of MoC  without spatial discretization, identifies the
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sources of numerical errors, and discusses variations for improve-
ment. It is shown that the fundamental source of numerical
problems is the approximation error arising from the linearization
of differential equations relating line terminal variables. A large
integration step dictated by the modal delays is required when it
is desired to eliminate spatial discretization. This paper concludes
that the line should be subdivided to improve numerical precision
and maintain stability. The subdivision of line however supresses
the expected numerical advantages over traveling wave methods
for uniform lines.

2. Frequency dependent model in time domain

This section shows the development of line equations in time
domain while considering the frequency dependence. To empha-
size the frequency dependence of electrical parameters, it is helpful
first to write the distributed line equations in frequency domain. For
a transmission line with n conductors:

−dV (x, s)
dx

= Z (s) I (x, s) , −dI (x, s)
dx

= Y (s) V (x, s) (1)

In (1) s is the Laplace operator, x is the spatial variable along
which the waves propagate, V and I are voltage and current vectors,
Z is the series impedance matrix and Y is the shunt admittance
matrix, both per unit length. For a line of n conductors, the size of
the matrices is n-by-n and the size of the vectors is n-by-1.

The transformation of (1) into time domain results in convolu-
tion integrals which need to be computed over discrete time steps
when the model is hosted in an EMT-type program. The approx-
imation of frequency dependent coefficients with partial fraction
expansions lead to efficient computation of convolution integrals.
The following rational form can be used for the fitting of Z

Z (s) ∼= RDC + s

(
D +

N∑
i=1

Ki
s − pi

)
(2)

if s is realized as complex frequency, then RDC represents the DC
resistance matrix, D corresponds to a constant matrix of inductance,
Ki is the matrix of residues associated with the pole pi, and N is the
number of poles used for fitting. The rational function accounts for
the frequency dependence of resistance and inductance.

A similar form for the shunt admittance matrix is used but only
the equivalent of D is kept since the conductance and the frequency
variation of parameters can usually be neglected:

Y (s) = sC (3)

In (3), C is the shunt capacitance matrix and it is constant.

2.1. Fitting procedure

Since the fitting quality plays an important role in simulation
precision, an efficient fitting procedure is contributed here. First,
(2) is rearranged as follows:

1
s

(Z (s) − RDC ) ∼= D +
N∑
i=1

Ki
s − pi

(4)

The matrix RDC is obtained by using a very low frequency sam-
ple, then the diagonal elements of the left hand side of (4) are
summed and the vector fitting (VF) method [15] is applied in order
to identify the common poles for each entry in the matrix. Fol-
lowing the identification of poles, Ki and D are computed using
an overdetermined linear system of equations. Note that a wide-
band frequency range (typically from a few millihertz to a few MHz)
and several frequency samples (typically 100–200) are used to con-

struct the overdetermined system of equations for both stages of
fitting.

One remark in the solution of (4) is related to D. It should corre-
spond to a constant line inductance at high frequencies and letting it
be an unknown variable has one sole purpose of relaxing the fitting
process and minimizing the order of fitting. However, the fitting
result should be checked carefully if the product DC produces real-
istic modal velocities, i.e. less than speed of light, otherwise it is
advisable to fix D by using a high frequency sample and move it to
the left hand side of (4).

2.2. Back to time domain

Once the series impedance and shunt admittance matrices are
realized with (2) and (3), they are inserted into the line equations in
(1). Then, the transformation of equations into time domain results
in:

∂i(x, t)
∂x

+ C
∂v(x, t)
∂t

= 0 (5)

∂v (x, t)
∂x

+ D
∂i (x, t)
∂t

+ RDC i (x, t) + ∂
∂t

t∫
0

h (t − �) i (x, �)d� = 0 (6)

where

h (t) =
N∑
i=1

epitKi. (7)

In (6), the derivative can be moved inside the integral yielding:

∂v(x, t)
∂x

+ D
∂i(x, t)
∂t

+ Rhi (x, t) + � (x, t) = 0 (8)

with

Rh = RDC +
N∑
i=1

Ki (9)

� (x, t) =
N∑
i=1

piKi [e
pit ∗ i (x, t)] (10)

where the symbol * denotes convolution.
The Eqs. (5) and (8) form a system of two PDEs governing voltage

and current waves along the line, and they take into account the
frequency dependence of series impedance.

3. Method of characteristics

This section describes the application of the method of charac-
teristics which seeks to transform the PDEs into ODEs. The voltage
and current variables in the system of PDEs above are in phase
domain. They need to be first transformed such that each vari-
able gets associated with a single modal velocity. To this end, the
following transformation matrices are introduced:

T−1
V DCTV = � (11)

T−1
I CDTI = � (12)

where � is a diagonal matrix. Note that C and D are constant
matrices so there is no need to introduce frequency dependent
transformation matrices. Note that � is associated with modal
velocities:

� =
√
�−1 = diag (�1, . . .,  �n) (13)

The modal velocities (�i) are always positive and are related to
the derivative dx/dt. According to the direction of the wave, the
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