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a  b  s  t  r  a  c  t

Linear  optimal  power  flow (LOPF)  algorithms  use a linearization  of  the  alternating  current  (AC)  load
flow  equations  to  optimize  generator  dispatch  in a network  subject  to the  loading  constraints  of  the
network  branches.  Common  algorithms  use  the voltage  angles  at the  buses  as  optimization  variables,
but  alternatives  can  be computationally  advantageous.  In this  article  we  provide  a  review  of  existing
methods  and  describe  a new  formulation  that  expresses  the loading  constraints  directly  in terms  of the
flows  themselves,  using  a decomposition  of  the  network  graph  into  a spanning  tree  and  closed  cycles.  We
provide  a comprehensive  study  of  the computational  performance  of  the various  formulations,  in settings
that include  computationally  challenging  applications  such  as multi-period  LOPF  with  storage  dispatch
and  generation  capacity  expansion.  We  show  that the  new  formulation  of  the  LOPF solves  up  to  7  times
faster  than  the  angle  formulation  using  a commercial  linear  programming  solver,  while  another  existing
cycle-base  formulation  solves  up  to  20  times  faster,  with  an  average  speed-up  of  factor  3  for  the  standard
networks  considered  here.  If generation  capacities  are  also  optimized,  the  average  speed-up  rises  to  a
factor  of 12,  reaching  up to  factor  213  in  a particular  instance.  The  speed-up  is largest  for  networks  with
many  buses  and  decentral  generators  throughout  the  network,  which  is  highly  relevant  given the rise
of  distributed  renewable  generation  and  the computational  challenge  of  operation  and  planning  in such
networks.

©  2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Optimal power flow (OPF) problems can be constructed to find
the welfare-maximizing generation and consumption levels in a
network given the physical load flow equations, branch loading
limits and generator cost functions. The full load flow equations are
non-linear and the resulting optimization problem is non-convex,
which makes it both challenging and computationally expensive to
find a global optimum [1]. In transmission networks with sufficient
reactive power compensation, linearizing the load flow equations
introduces only small errors [2,3], with the benefit that the Linear
OPF (LOPF) can be expressed as a linear problem, whose convexity
guarantees that a local optimum is a global optimum.

LOPF algorithms are principally used in applications with high
computational complexity where it would be impossible to use the
full load flow equations, such as clearing markets with nodal pric-
ing [4] (particularly with multi-period storage constraints and/or
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generator unit commitment), determining redispatch measures in
markets with zonal pricing [5], optimizing dispatch taking account
of contingencies (Security Constrained LOPF (SCLOPF)) [6,7] and
in the long-term optimization of investment in generation and
transmission assets [8,9]. Where higher accuracy solutions are
required, linear solutions can be fed as an initial solution into algo-
rithms that use the full non-linear load flow equations [1]. LOPF is
becoming more important with the growth of renewable energy,
since the fluctuating feed-in has led to more frequent situations
where the network is highly loaded [10]. When large networks are
optimized over multiple representative feed-in situations, espe-
cially with discrete constraints on generation dispatch, the LOPF
problems can still take a significant time to solve, despite the lin-
earization of the problem. Approaches in the literature to reducing
the computational times of LOPF problems include decomposition
[11–15], reformulating the problem using Power Transfer Distri-
bution Factors (PTDFs) [16,17] and a parallelizable algorithm using
the primal-dual interior point method [18].

In textbooks [6,19] and major software packages such as MAT-
POWER [20], DIgSILENT PowerFactory [21], PowerWorld [22] and
PSAT [23], the linearization of the relations between power flows
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in the network and power injection at the buses is expressed indi-
rectly through auxiliary variables that represent the voltage angles
at the buses. In this paper, we introduce a new formulation of
the LOPF problem that use the power flows directly, decomposed
using graph theoretic techniques into flows on a spanning tree and
flows around closed cycles in the network. The new formulation
involves both fewer decision variables and fewer constraints than
the angle-based formulation. We  evaluate the computational per-
formance of the various methods for the LOPF problem, showing
that the cycle-based formulations can solve significantly faster than
the traditional angle-based formulation. We  examine not just the
basic LOPF problem, but also applications that include more com-
putationally challenging multi-period storage optimization and
generation capacity expansion.

Cycle-flow techniques have already been used in [24] to improve
the calculation times of PTDFs and to gain a new understanding of
the propagation of line outages in networks [25]. The cycle-based
LOPF formulation we call the ‘Kirchhoff formulation’ below was
used in [26] for single-period LOPF and in [27] for single-period
LOPF with optimal transmission switching; in contrast to those
papers, here we provide an additional new cycle-based formulation
and benchmark both formulations against established formulations
for a different set of computationally-challenging problems: those
extending over multiple periods.

In Section 2 the different formulations of the linear load flow are
reviewed to prepare for the introduction of the optimization in Sec-
tion 3. Extensions beyond the basic LOPF problem are described in
Section 4 and the results of the performance analysis are presented
in Section 5. Variables are defined in Table 1.

2. Linear load flow formulations

The aim of the linear load flow calculation is to calculate the
active power flow f� on each of the branches �=1, . . .,  L in terms of
the active power pi injected or consumed at each of the buses i = 1,
. . .,  N. In this section four methods are presented for solving the
linear load flow, which lead to different formulations of the LOPF
problem, as discussed in the next section. The different formula-
tions lead to mathematically identical solutions, as demonstrated
in this section.

The linear approximation is valid if all branch resistances r� are
negligible compared to the branch reactances x�, r�� |x�|, reactive

Table 1
Variable definitions.

Variable Definition

i, j ∈ {1, . . . N} Bus labels
s ∈ {1, . . . G} Generation source labels (wind, solar, gas, etc.)
k,  � ∈ {1, . . . L} Branch labels
c, d ∈ {1, . . . L − N + 1} Cycle labels
t  ∈ {1, . . . T} Snapshot/time point labels
di,s Dispatch of generator at bus i with source s
Di,s Available power of generator i, s
li Electrical load at bus i
�i Voltage angle at bus i
pi Total active power injection
�� Voltage angle across a branch
f� Branch active power flow
g� Flow on spanning tree (zero if � not in tree)
hc Flow around cycle c
F� Branch active power rating
x� Branch series reactance
Ki� N × L incidence matrix
C�c L × (L − N + 1) cycle matrix
T�i L × N tree matrix
B�k Diagonal L × L matrix of branch susceptances
� N × N weighted Laplacian matrix

�  = KBKT

power flows may  be neglected, all voltage magnitudes are kept at
nominal value and if all voltage angle differences across branches
�� are small enough that we  can approximate sin��∼ ��. The useful-
ness of the linear approximation and the errors thereby introduced
are discussed in [2,3]. If the approximation holds, the real power
over a transmission line � is given by

f� = ��
x�
, (1)

where �� is the voltage angle difference between the terminal buses
of line �.

The flows f� are constrained to be physical by the two Kirchhoff
circuit laws for the current and voltage. Kirchhoff’s Current Law
(KCL) states that the current injected at each bus must equal the
current withdrawn by the branches attached to the bus. This law
can be expressed using the incidence matrix Ki�, which has non-
zero values +1 if branch � starts on bus i and −1 if branch � ends on
bus i. KCL then reads

pi =
∑
�

Ki�f� ∀i = 1, . . .,  N. (2)

KCL directly implies power conservation
∑

ipi = 0 because∑
iKi� = 0 for all lines �. KCL provides N linear equations for the

L unknown flows f�, of which one is linearly dependent. This is not
sufficient to uniquely determine the flows unless the network is a
tree. Hence, L − N + 1 additional independent equations are needed.

The necessary equations and physicality are provided by the
Kirchhoff Voltage Law (KVL), which states that the sum of potential
differences across branches around all cycles in the network must
sum to zero. It follows from graph theory that there are L − N + 1
independent cycles for a connected graph [28], which provides
enough equations to constrain the f� completely. The independent
cycles c ∈ {1, . . . L − N + 1} are expressed as a directed linear com-
bination of the branches � in the cycle incidence matrix

C�c =

⎧⎨
⎩

1 if edge � is element of cycle c,

−1 if reversed edge � is element of cycle c,

0 otherwise.

(3)

Then the KVL becomes∑
�

C�c�� = 0 ∀c = 1, . . .,  L − N + 1. (4)

where �� = �i − �j is the angle difference between the two buses i,
j which branch � connects. Using Eq. (1), KVL can be expressed in
terms of the power flows as∑
�

C�cx�f� = 0 ∀c = 1, . . .,  L − N + 1. (5)

2.1. Angle formulation

Commonly, the linear load flow problem is formulated in terms
of the voltage phase angles �i, i ∈ {1, . . .,  N}. Using the incidence
matrix the power flows are expressed as

f� = 1
x�

∑
i

Ki��i ∀� = 1, . . .,  L (6)

If the L × L diagonal matrix B is defined with B�� = 1/x� then the KCL
equation (2) becomes

pi =
∑
�,k,j

Ki�B�kKjk�j

=
∑
j

�ij�j, ∀i = 1, . . .,  N,
(7)
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