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a  b  s  t  r  a  c  t

This  paper  describes  the determination  of quadratic  turning  points  of the  non-linear  parameterised  power
flow  equations  using  two  optimisation-based  approaches.  The  first  is  based  on  the  trust  region  concept
combined  with  sequential  quadratic  programming.  The  second  uses  tensor  calculations  as  an  extension
of  Newton’s  method.  It  is  shown  that  the  use  of  these  algorithms  imparts  robustness  to  the  iterative
process,  providing  fast  and  reliable  solutions.  Numerical  results  obtained  for  problems  with  thousands
of  variables  are used  to illustrate  the main  features  of  the approaches,  emphasising  the  robustness  of the
trust region-based  approach.
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1. Introduction

From a recent past, much attention has been devoted to the
development of computational software to support the operator
in the steady state analysis of electrical power systems, particu-
larly the power flow and the optimal power flow programs. The
analytical modelling of these problems requires the solution of
a set of algebraic equations with a high degree of non-linearity.
The conventional iterative methods (like Newton’s, for instance)
are prone to have difficulties of convergence while dealing with
ill-conditioned systems, which mostly occurs when the load level
of the power network is too high. Advanced strategies, like those
based on the trust region concept, have been proposed to overcome
these drawbacks. The preliminary applications of trust region-
based algorithms in power system analysis have presented a
number of desirable features [1,2], with very promising results in
terms of robustness.

A very peculiar class of problems consists in finding the criti-
cal loadability of the power flow equations, that is, the load level
beyond which there is no solution for the power flow equations.
This problem has been associated with the identification of bifur-
cation points of the power flow equations. Usually, two types of
local bifurcations are associated with the steady state aspects of
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the voltage collapse [3]. The first is the saddle-node bifurcation, in
which the Jacobian matrix of the algebraic equations representing
the steady state power system operation is singular. The second,
named limit-induced bifurcation, is characterised by changes in the
voltage stability condition, as a consequence of a particular variable
reaching its limit. The present work focuses on the saddle-node
bifurcation points corresponding to the maximum loadability of
the steady state power flow equations (which is a static model) [4].
Although interesting from both the theoretical and the practical
points of view of power system stability, other types of bifurcation
(described in [5–7], for instance) are not focused on here.

Continuation methods have been applied [8] to find a sequence
of power flow solutions from a base case to the critical load level.
Only a few applications of direct methods to obtain the power flow
solution corresponding to the critical load level are found in the lit-
erature. Reference [3] presents the basic concepts of saddle-node
and limit-induced bifurcation points, as well as the determination
of these critical points through the Continuation and Optimisation
methods. It also shows the theoretical comparison between the
solutions obtained through these methods, and presents numerical
results obtained for a small test system through software pack-
ages (such as AMPL and KNITRO) to illustrate this comparison.
Reference [9] formulates this problem in terms of the Transver-
sality Conditions and [10] uses a constrained optimisation model.
In both cases, Newton’s method is applied to solve a set of non-
linear algebraic equations. However, numerical strategies based on
first order information are known to be very sensitive to the ini-
tial conditions, which is the main drawback for their application.
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In [11,12], the solution of a static optimisation problem is obtained
through Newton’s method extended to take advantage of the sec-
ond order information of the Taylor series expansion. This improves
the search for the critical solution and facilitates the treatment of
the constraints. The latter proposes the use of a quadratic param-
eterisation, which reduces the dependence of the critical solution
on the initial estimates.

This paper describes and compares two algorithms designed to
find turning points of the set of non-linear power flow equations
through direct methods. As a contribution, in the first algorithm, the
problem is modelled as a constrained optimisation problem, which
is solved through a combination of sequential quadratic program-
ming with a trust region strategy [13,14]. The main idea is to adjust
the solutions belonging to two orthogonal subspaces, one aimed at
satisfying the constraints and the other searching for improving the
objective function. The second algorithm takes profit of the second
order information (or tensor term) of the Taylor series expansion of
the equations representing the optimality conditions, as proposed
in [15,16]. Numerical results obtained for problems with thousands
of variables are used to illustrate the features of these approaches.
In summary, this paper is aimed at showing that the proposed
methodology can be numerically robust (because of the Orthogonal
matrices), reliable (because of the Trust region) and faster (because
of the use of the second order (tensor) term). This brings comple-
mentary aspects to the analysis of saddle-node bifurcation points,
with respect to what has been presented in the literature.

The remaining of this paper is organised as follows: Section 2
shows the analytical formulation of the optimisation problem that
represents the determination of the critical loadability, and the
relationship between its Optimality Conditions and the Transver-
sality Conditions; the basic solution methods and the optimisation
algorithms are described in Section 3; Section 4 presents numeri-
cal results obtained from the computational implementation of the
approaches; and the main conclusions are presented in Section 5.

2. Analytical model

2.1. The parameterised power flow equations

Supposing that nb is the total number of buses of the power
system and that rectangular coordinates are used to model the com-
plex bus voltages, the power balance equations of the ith bus are
expressed as,

�Pi = Pgi − Pdi − ei

nb∑
j=1

(Gijej − Bijfj) + fi

nb∑
j=1

(Gijfj + Bijej) = 0

�Qi = Qgi − Qdi − fi

nb∑
j=1

(Gijej − Bijfj) − ei

nb∑
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(Gijfj + Bijej) = 0

�Vi = (Vsp
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) = 0

(1)

where i refers to the bus index; �Pi, �Qi and �Vi are respec-
tively the active power, reactive power and voltage magnitude
mismatches; Pgi and Qgi are the active and reactive power genera-
tion; Pdi and Qdi refer to the previously known active and reactive
power demand; ei and fi are the real and imaginary components
of the complex bus voltage; Vsp

i
is the pre-specified voltage magni-

tude; and Gij and Bij are constant components of the bus admittance
matrix (which depends only on the topology of the network and the
parameters of the transmission lines).

Solving the power flow equations consists in determining the
complex bus voltages, such that the mismatch values satisfy a
pre-specified tolerance (usually 10−3 per unit). Traditionally, there
are (nb − 1) equations related to the active power mismatches.
The equations involving �Vi correspond to the set of buses with

devices (generators, for instance) to control the bus voltage mag-
nitude/reactive power generation. In case a device achieves a
reactive power operational limit, the equation related to �Vi is
interchanged with its reactive power balance equation. Equations
related to �Qi correspond to the set of buses without voltage mag-
nitude control devices. As a matter of fact, this procedure is referred
to as PV-PQ bus type conversion. The number of equations of �Qi
plus �Vi is also (nb − 1). Thus, the power flow problem stated by
Eq. (1) involves neq = 2nb − 2 equations which can be alternatively
written as,

Pgi − Pdi − Pi(e, f ) = 0

Qgi − Qdi − Qi(e, f ) = 0

(Vsp
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)
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+ f 2

i
) = 0

(2)

where Pi(e, f) and Qi(e, f) are the bus active and reactive power
injections expressed as functions of the real and imaginary terms
of the complex voltages. These terms compose a set of nvr = 2nb − 2
variables, since one pair (ei, fi) must be pre-specified to balance
network losses.

In order to model analytically the determination of the maxi-
mum  loadability in steady state, the power balance equations of
the ith bus are parameterised as suggested in [8], that is,

Pgi − (P0
di

+ �2�Pdi ) − Pi(e, f ) = 0

Qgi − (Q0
di

+ �2�Qdi ) − Qi(e, f ) = 0
(3)

where P0
di

and Q0
di

refer to the active and reactive power demand of

the ith bus in a base case, �Pdi and �Qdi represent the pre-specified
change rate of the active and reactive power load of bus i, � is a
scalar named load parameter,  and the other variables have been
previously defined. The quadratic parameterisation is equivalent to
imposing a non-negativity constraint in the load variation, ensuring
that the critical loadability will always be greater than (or at least
equal to) a base case loadability. Eq. (3) represents not only a single
isolated nonlinear system to be solved, but a family of problems
depending on the load parameter �. Note that: (1) � = 0 corresponds
to the base case power flow problem, and (2) there is a maximum
value for �, beyond which there is no power flow solution.

Pre-specified change rates of power load (and generation) can be
specified from previously collected data or even from real time load
measurements. These values are estimated for each bus, providing
a very particular load variation (and eventually generation change)
as the load parameter is modified [3]. In the present work, we have
specified a change rate of 1% of the active and reactive power of the
base case for each bus.

It must be pointed out that since the traditional power flow
modelling is adopted, the slack bus compensates the active power
balance, such that it has no direct influence on the load increase
(except if its capacity is reached). On the other hand, the active
power generation of the PV buses can be parameterised; that is,
it can be expressed as Pgi = P0

gi
+ ��Pgi , which requires only the

specification of the generation change rate (�Pgi ) [3,6]. These buses
support the largest amount of the load increase, since the attribu-
tion of the whole amount of load change to the slack bus could be
considered inadequate. Alternatively, the active power generation
could be included in the set of optimisation variables. However, this
procedure would require the extension of the optimisation process,
since in this case the dimension of the problem would be larger,
which is a disadvantage in terms of both the additional calculations
required and the simplicity of the analytical formulation.

The set of parameterised power flow equations is expressed in
a compact form as,

g(x, �) = 0 (4)
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