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a  b  s  t  r  a  c  t

This paper  introduces  a novel  method  to identify  coherent  generators  using  the inter-area  modal  char-
acteristics  of power  systems.  The  key  idea  is  to extract  the inter-area  modes  from  the  simulated  data
and  then  to  apply  a clustering  strategy.  Thus,  the  proposed  method  consists  of  extracting  the  phase  of
the  oscillatory  modes  via  a modal  identification  technique  and  applying  a hierarchical  agglomerative
clustering  technique  together  with  the  Elbow’s  method  to gather  the phases  of  each  mode,  enabling  to
provide  coherent  trajectories  of  generators.  The  proposed  method  uses  a Taylor-Fourier  filtering  strat-
egy to  remove  noises  and nonlinearity  in  the  time  evolution  of  coherent  generators.  Simulated  signals
with  noise  added  are  used  for  assessing  the  proposition.  Results  corroborate  the proposed  strategy  for
identifying  coherent  trajectories  in large-scale  power  systems.

©  2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Coherent trajectories in power systems are useful for controlled
islanding [1–3] and wide-area control [4,5]. They arise due to the
synchronous rotating machines connected into the power network,
because they behave as coupled swing dynamics. This concept is
widely known as coherency.

There are two main types of methods for identifying coher-
ent generators [6,7], classified as: (i) model-based methods; and
(ii) measurement-based methods. The former is generally based on
the linearized state-space model, where methods such as slow
coherency grouping (using the singular perturbations technique
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to display the time-scale separation of the inter-area modes and
local modes) [8], tight slow coherency grouping [8], Zaborszky’s
clustering technique [9], weak link, and Tolerance-Based Method
(TBM) technique [10,11], are used to analize offline coherency stud-
ies. The TBM finds coherent generators using the right eigenvectors
from a set of user-specified modes; where generators are consid-
ered coherent if the phase of their right eigenvector entries, relative
to a common reference entry, are within a coherency threshold.
Also, the chosen modes should be inter-area modes with large
observability in the entire system. Meanwhile, the latter deals with
the measured or simulated response of the power system taking
advantage of Wide-Area Monitoring Systems (WAMS) composed
of synchrophasors. Several methods have been proposed, includ-
ing recent techniques based on Koopman modes [12,13], graph
theory [1], hierarchical clustering [14], correlation coefficients
[15], K-harmonic means clustering [16], independent component
analysis (ICA) [17–19], support vector clustering [20,21], and fre-
quency deviation signals (FDS) [22]. These techniques address the
coherency problem using polluted signals, handling noise immu-
nity between 20 and 50 dB for FDS and ICA [22]. This paper tackles
the inter-area modes identification-based coherency from the sim-
ulated response of power systems, with the ability of identifying
modal parameters even in presence of noise by the Taylor-Fourier
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filters (TFF) introduced in power systems in [23,24] and in phasor
estimation in [25]; which allow to extract the inter-area modes, as
exhibits in [23,24]. Likewise, measurement-based methods allow
coherency identification under changes in system operating condi-
tion and network configuration, because the grouping of coherent
generators may  vary. Thus, transient conditions imply that one
coherent group may  be split into smaller groups, or on the contrary,
multiple groups may  be joined into a bigger coherent group.

The proposed approach is motivated by the coherency con-
cept defined by Podmore in [26], where a clustering algorithm is
used to process the approximate swing curves obtained by lin-
ear simulation and thereby determine the coherent generators, so
that the coherency is based on similar dynamic behavior between
two machines. The approach here is driven by the advance in
modal extraction techniques based on the power system measured
response, which are assumed reliable in [27–30]. Other approaches
have been proposed for identifying oscillatory modes based on
measurements. Some relevant techniques are discussed in [31,32].
Among these, the following are highlighted: Fourier transform (FT);
Hilbert-Huang transform (HHT); Prony analysis (PA); eigensystem
realization algorithm (ERA); matrix pencil (MP); and Teager-Kaiser
energy operator (TKEO). In reference [33], comparisons are accom-
plished exhibiting the Taylor-Fourier transform (TFT) performance
with respect to PA, ERA, and MP,  unveiling a suitable performance
on its applicability for identifying electromechanical modes.

In order to get the coherent groups, the modal characteristics
estimated by TFF and a clustering technique are used. As stated, pre-
vious works use the topological information of the grid for grouping
the coherent trajectories. In this paper, the modal information
is used for identifying the coherent groups, i.e., no information
about the network structure is needed. The hypothesis is validated
using an exhaustive clustering technique known as the hierarchi-
cal agglomerative clustering algorithm (HACA) [34,35], selecting
the optimal number of clusters by the Elbow’s method presented
in [36]. The applicability of this proposition has been assessed in
two large-scale power systems: New England (NE) power system
[37] and the Northeast Power Coordinating Council (NPCC) sys-
tem [8]. Comparisons with the classical slow-coherency method
are provided in order to corroborate the proposition.

According to the above-mentioned, the major contributions of
the paper are summarized as follows:

1. A novel strategy for determining inter-area-mode-based coher-
ent trajectories including high noise tolerance is proposed by a
filtering approach.

2. This paper introduces the coherent trajectory grouping based on
modal characteristics from the Taylor-Fourier filters estimates.

3. A hierarchical agglomerative clustering technique and the
Elbow’s method are used to identify coherency.

The paper is organized as follows. Section 2 presents the tech-
nique of identifying oscillatory modes based on Taylor-Fourier
filters. Then, the hierarchical agglomerative clustering algorithm
and Elbow’s method are discussed in Section 3. In Section 4, the
computational complexity is presented. Finally, the method is
applied to two large-scale power systems in Section 5.

2. Identification of modal characteristics

The Taylor-Fourier transform (TFT) for extracting modal infor-
mation from oscillating signals in power systems is described here.
The TFT is integrated by Taylor and Fourier subspaces (for more
details, see [24,33]), allowing a choice on the number of non-zero
Taylor terms used for the continuous-time signal defined by

s(t) = Re{p(t)ej2�f1t} = a(t) cos(2�f1t + ϕ(t)) (1)

where p(t) = a(t)ejϕ(t) is known as a dynamic phasor and f1 is the
fundamental frequency, so that the phasor can be approximated
by the Kth Taylor polynomial centered at t0 as

pK (t) = p(t0) + ṗ(t0)(t − t0) + · · · + pK (t0)
(t − t0)K

K!

t0 − T/2  ≤ t ≤ t0 + T/2

(2)

To build the Taylor subspace, the signal model in (1) is dis-
cretized by t = nsTs, where Ts = 1/(Nf1) is the sampling period, and
N represents the samples per fundamental cycle. Thus, the Taylor
subspace is constructed by

T = [t0
n tn t2

n/2! · · · tKn /K!] (3)

where tn is a diagonal matrix whose components are given by
tn =− (K + 1)Ts(ns/2) to (K + 1)Ts(ns/2), ns corresponding to each sam-
ple of the Taylor’s interpolating polynomial at each sampling time
(Ts).

The Taylor-Fourier (TF) subspace in [33] is shaped as

B =

⎡
⎢⎢⎢⎢⎢⎣

t0
n1 t1

n1 · · · tKn1

t0
n2 t1

n2 · · · tKn2

...
...

. . .
...

t0
nC t1

nC · · · tKnC

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

WN 0 · · · 0

0 WN · · · 0

...
...

. . .
...

0 0 · · · WN

⎤
⎥⎥⎥⎥⎦

(4)

where C = K + 1 is the number of cycles, which corresponds to the
slower swing modes into the oscillating signal, and WN is the
Fourier matrix with harmonic phase factors ωhN = ej2�h/N in each
vector h = 0, . . .,  N − 1. Thus, the Fourier matrix is

WN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 ωN ω2
N · · · ω(N−1)

N

1 ω2
N ω4

N · · · ω2(N−1)
N

...
...

...
. . .

...

1 ω(N−1)
N ω2(N−1)

N · · · ω(N−1)2

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Note that in (4), the vectors of the Fourier matrix are harmonic
modulators of the Taylor terms included in a Kth Taylor polynomial,
K > 0.

Once the Taylor-Fourier subspace is defined, the synthesis equa-
tion is established by

ŝ = B�̂, (6)

where matrix B is known as the Taylor-Fourier matrix, ŝ is the esti-
mated signal, and vector �̂ contains the estimated TF coefficients
and their derivatives according to the signal model (1) proposed in
[23,38].

By taking the least-squares technique as the Taylor-Fourier coef-
ficients in [39,40]. The error between the input signal s and its
approximated Kth Taylor interpolating polynomial B�̂ is defined
as

e = s − B�̂. (7)

Then, the best estimates of �̂ are those obtained by solving the
normal equations in (8).

BHB�̂ = BHs. (8)

By solving (8), the best parameters are attained, in the sense
that they minimize the sum of the squared errors in (7). Thus, no
iterative procedure is required. Then, the TF estimates are given by

�̂ = [BHB]
−1

BHs = B†s, (9)
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