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Abstract: The flexible manipulator is a spatially distributed mechanical system. An accurate model of 

the flexible manipulator is essential for the positioning control of the end effector. In this study, a grey-

box distributed parameter modeling approach is proposed for the flexible manipulator with unknown 
nonlinear dynamics. First, a nominal Euler-Bernoulli beam model is derived to describe the linear 

dynamics. To compensate unknown nonlinear dynamics, a nonlinear term is added in the nominal model. 

The Galerkin method is used to reduce the infinite-dimensional partial differential equation (PDE) model 

into a finite-dimensional ordinary differential equation (ODE) model. A neural network is designed to 

estimate the unknown nonlinearities from the input-output data. The effectiveness of the proposed grey-

box distributed parameter modeling approach is verified by the simulations on a flexible manipulator. 
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1. INTRODUCTION 

An accurate model of the flexible manipulator is essential for 
the positioning control of the end effector. Due to the spatial 

distribution of the flexible manipulator, the dynamics of the 

flexible manipulator with respect to the applied external force 

belong to distributed parameter system (DPS). It should be 

described by a partial differential equation (PDE). Currently, 

the modeling of the flexible manipulator can be classified 
into lumped parameter approach and distributed parameter 

approach. 

For simplicity, the lumped parameter models are often used 
for modeling the flexible manipulator. The widely used 

lumped parameter models include transfer function model 

(Butt, Cappella & Kappl, 2005; Ohler, 2007; Saeidpourazar 

& Jalili, 2008b) and autoregressive moving average 

exogenous (ARMAX) model (Khadraoui, Rakotondrabe & 

Lutz, 2014a). Some parameters in the model are often 

unknown, thus the parameter estimation from the 

experimental data is often used. For the transfer function 
model, the parameter estimation methods are developed (e.g., 

Stark et al., 2005). Currently, the lumped parameter models 

are often designed as linear models, while the important 

nonlinear dynamics are ignored. Though the lumped 

parameter models are simple for implementation, they always 

lose some accuracy since the important spatial dynamics of 

the flexible manipulator are not considered. 

To model spatial dynamics, the distributed parameter models 
should be used, e.g., Euler-Bernoulli beam model 

(Saeidpourazar & Jalili, 2008a, 2009; Mahdavi, et al., 2008; 
Rubio-Sierra, Vazquez & Stark, 2006; Butt & Jaschke, 1995; 

Eslami & Jalili, 2011). Currently, most of Euler-Bernoulli 

beam models are derived from the first-principle. Though the 

spatial dynamics are included, most of them only describe 

linear dynamics under simplified conditions and model 

parameters are often nominal values. In practice, there are 

often some unknown uncertainties, e.g., inaccurate parameter 

or nonlinear dynamics. To improve the model accuracy, it is 

necessary to compensate these model uncertainties from the 
data using the system identification techniques. 

For other kinds of DPS, the data-based spatio-temporal 

modeling has been studied, e.g., thermal process and fluid 
flow. Because the DPS is infinite-dimensional, for 

implementation model reduction is required to reduce the 

PDE to a finite-dimensional ordinary differential equation 

(ODE). The commonly used model reduction methods 

include finite-difference (Parlitz & Merkwirth, 2000; Guo & 

Billings, 2007), finite element (Coca & Billings, 2002), 

spectral methods (Boyd, 2000) and so on. After the model 

reduction, the identification of ODE model can be performed 
with traditional modeling methods. When only some 

parameters of the model are unknown, the parameter 

estimation methods should be used. When there are some 

unknown nonlinearities, both model structure and parameters 

should be identified. For the parabolic PDE with unknown 

nonlinearities, a spectral method based intelligent modeling is 

proposed (Deng, Li & Chen, 2005). 

In this study, a grey-box distributed parameter modeling 
approach is proposed for the flexible manipulator with 

unknown nonlinear dynamics. The nonlinear dynamics can 

come from several aspects, e.g., the material properties and 
the geometrical no-uniformity. A nominal Euler-Bernoulli 

beam model is derived from the first-principle. To 

compensate uncertain nonlinear dynamics, a nonlinear term is 

added in the nominal model. The infinite-dimensional PDE 

model is reduced into a finite-dimensional ODE model using 

the Galerkin method. Next, a neural network is established to 

learn the unknown nonlinearities from the input-output data. 

The proposed grey-box distributed parameter modeling 
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approach is verified by the simulations on a typical flexible 

manipulator. 

The rest of this paper is organized as follows. The Euler-
Bernoulli beam model is described in section 2. The Galerkin 

method based model reduction is presented in section 3. The 

neural network model design is given in section 4. Section 5 

reports simulations on a flexible manipulator. Finally, the 

conclusions are presented in section 6. 

2. EULER-BERNOULLI BEAM MODEL FOR THE 

FLEXIBLE MANIPULATOR 

As shown in Figure 1, the dynamics of the flexible 

manipulator are spatially distributed. Though the Euler-

Bernoulli equation can describe the flexible manipulator as a 
distributed parameter system, it is often derived under ideal 

conditions and thus it requires parameters of manipulator to 

be known. In fact, these parameters are often inaccurate or 

difficult to measure. The simplified modeling will generate 

the model uncertainties, e.g., the ignored nonlinear dynamics. 

In practice, the highly accurate positioning needs to 

compensate the model uncertainties. 
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Figure 1: Flexible manipulator 

2.1  Nominal Euler-Bernoulli Beam Model 

First, a nominal model is derived using the theoretical 

modeling. As shown in Figure 1, the flexible manipulator is 

built in at one end, free at the other end. Assume it is a 

homogeneous beam with a constant rectangular cross section 

and deforms in the linear elastic range. By neglecting the 

rotary inertia, shear deformation, axial effects and the tip 

mass, the flexible manipulator can be described by one-

dimensional Euler-Bernoulli equation (Rubio-Sierra, 
Vazquez & Stark, 2006) as below 

 
2 4

2 4

( , ) ( , ) ( , )
0

w x t w x t w x t
m c EI

t t x

  
  

  
,            (1) 

where ( , )w x t  is the time-dependent transverse displacement 

along z-axis relative to its support, [0, ]x L  is the spatial 

variable along the x-axis, t  is the temporal variable, E  is 

Young’s modulus of the beam, I  is the moment of inertia 

about the y-axis, m  is the constant manipulator mass density, 

c  is the damping factor. 

The boundary conditions at the fixed end with respect to the 

support are zero deflection and zero slope as follows 

 (0, ) 0, (0, ) 0xw t w t  .                           (2) 

At the free end assume that there is no torque and a force 

( )q t  is acted perpendicularly to manipulator axis. Then, the 

boundary conditions at x L  are 

( , ) 0, ( , ) ( )xx xxxw L t EIw L t q t   .                    (3) 

Note that the subscripts denote the derivative with respect to 
the subscripted variable. 

2.2 Improved Nonlinear Euler-Bernoulli Beam Model 

The model (1) is only a linear approximation of original 

manipulator since some complex nonlinear dynamics and 

parameter uncertainties are neglected. Considering these 

uncertainties, the model is assumed to be 

 
2 4

2 4

( , ) ( , ) ( , )
( ( , )) 0

w x t w x t w x t
m c EI f w x t

t t x

  
   

  
,      (4) 

where the nonlinear compensation term ( )f   is a function of 

displacement w . For simplicity, the parameter uncertainties 

on E , I , m  and c  are integrated into the nonlinearity ( )f  . 

More complicated cases, where the nonlinearity ( )f   is a 

function of position x  and time t , are ignored for simplicity 

though the proposed modeling can also be applicable for 

these cases after minor revisions. The boundary conditions 

are same as (2) and (3). 

3. GALERKIN METHOD FOR MODEL REDUCTION 

3.1 Homogenized Boundary Conditions 

For implementation, the mode reduction methods are used to 

transform the infinite-dimensional PDE to finite-dimensional 

ordinary differential equation (ODE). Spectral method (Deng, 

Li & Chen, 2005; Boyd, 2000) is used here because it can 

derive a low-dimensional model. To do so, the boundary 

conditions (3) need to be homogenized. For this, a new 

variable ( , )v x t  is defined as below 

 ( , ) ( , ) ( ) ( )w x t v x t q t g x  ,                       (5) 

where ( )g x  is a geometrical function to be found later. 

Substituting (5) into (2) and (3), the conditions on ( )g x  to 

arrive at homogenous boundary conditions in terms of the 

new variable ( , )v x t  are 

 
(0) 0, (0) 0,

( ) 0, ( ) 1 / .

x

xx xxx

g g

g L g L EI

 

  
                       (6) 

Note that ( )g x  which satisfies conditions (6) is not unique. 

Here ( )g x  can be chosen as 

 4 3 2 21
( ) (2 5 3 ),

18
g x x Lx L x

EIL
                   (7) 

which satisfies conditions (6). Substituting (5) into the 

equation (4) and the boundary conditions (2) and (3), the 

following equation 

 

2 4

2 4

2 4

2 4

( , ) ( , ) ( , )
( ( ) ( ))

( ) ( ) ( )
( ) ( ) ( ) ,

v x t v x t v x t
m c EI f v q t g x

t t x

q t q t g x
m g x c g x EIq t

t t x

  
    

  

   
   

   

       (8) 

and homogenized boundary conditions 

 (0, ) 0, (0, ) 0,xv t v t                            (9) 
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