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a  b  s  t  r  a  c  t

Non-intrusive  load  monitoring  (NILM)  can  monitor  the  status  of  electrical  appliances  on-line  and  provide
detailed  power  consumption  data,  which  is the basis  for customers  to perform  energy  usage  analyses  and
electricity management.  The  voltage–current  (V–I) trajectory  can  be  used  as a  load  signature  to  repre-
sent  the  electrical  characteristics  of appliances  with  different  statuses.  Therefore,  this  paper  proposes  an
NILM algorithm  based  on features  of  the V–I  trajectory.  The  variation  in  the  overall  apparent  power  was
used  as the  criterion  of  event  detection,  and  the delta  of the V–I trajectory  was  extracted  by  smooth-
ing  and  interpolation.  Then,  ten V–I trajectory  features  were  quantified  based  on physical  significance,
which  accurately  represented  those  appliances  that  had  multiple  built-in  modes  with  distinct  power
consumption  profiles.  Finally,  the  support  vector  machine  multi-classification  algorithm  was  employed
for  load  recognition.  We  tested  the  proposed  algorithm  on  both  the  REDD  database  and  laboratory  data.
The numerical  results  demonstrate  that  the algorithm  has  higher  accuracy  than  the  algorithm  using other
load  features.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The advanced metering infrastructure (AMI) [1] is a compre-
hensive system for measuring, collecting, storing, analyzing and
using customer information. A smart meter is used in the AMI  to
obtain customers’ electricity consumption information and upload
it to the data center via the communication network. This allows
customers to view their own real-time electrical situation and
enables two-way information flow between the power grid and
users. Load monitoring is one component of the AMI. This technol-
ogy disaggregates the aggregated electricity consumption data into
the power consumption of individual appliances, and analyzes the
corresponding electricity data, which can be applied to electricity
management, energy saving, equipment fault diagnosis, and power
demand response [2–4].

Intrusive load monitoring requires the installation of sensors
on each appliance to measure electricity consumption. Although
it can perform high-precision monitoring, it also leads to high
installation costs [5,6]. Non-intrusive load monitoring (NILM) [7]
offers detailed electrical information of individual appliances with-
out changing the customer’s existing circuit structure. This method
has the advantages of low installation cost, little interference with
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users, and flexible application, and therefore, the method can be
widely used in various fields.

Load signatures are the electrical behavior of an individual appli-
ance when it is in operation. The NILM algorithm uses different load
signatures to extract features for load recognition. Hart [6] first pro-
posed using the variation of power as load features. The features
were easy to extract, and the accuracy could reach 80%; however,
the recognition accuracy will be greatly reduced for appliances with
similar power consumptions. Furthermore, the steady-state load
features, such as current harmonics [8], power harmonics [9,10]
and current waveforms [11–13], are employed in NILM. In Ref.
[13], the author transformed the steady-state current waveform via
stationary wavelet transformation (SWT) and then used the Burg
spectrum to identify the maxima at each level of the spectrum of the
SWT  decomposition to obtain the features of the current waveform.
In Ref. [14], the authors used higher-order statistics combined with
Fisher’s discriminated analysis and genetic algorithms to extract a
low-dimensional, representative feature vector from the load cur-
rent signal. Steady-state load signatures are less disturbed by noise,
but the similarity of load signatures increases with the expansion
of load types. The wavelet transform [15] and S-transform [16]
were employed to extract the transient load signatures, such as
the transient voltage [17] and transient current [18]. Ref. [19] addi-
tionally obtained more load information by extracting the power
spectrum of the transient current waveform to increase the dif-
ference among the load features. The use of transient signatures
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can improve the accuracy of load recognition because transient
signatures have a shorter duration and differ for every appliance.
However, the transient load signature extraction requires a high
sampling frequency and large data storage capacity, resulting in
an increased cost of hardware equipment. Moreover, the tran-
sient process of an appliance is affected by voltage fluctuations
in the power grid and the aging of the appliance, leading to fluc-
tuations in the transient signatures. The NILM algorithm for load
recognition using a single power feature has also been studied.
For example, Ref. [20] used active power to represent the load
features, and the factor hidden Markov model (FHMM)  was used
to construct the household power consumption model. Disaggre-
gated power was evaluated using the particle filter method. In Ref.
[21], the author proposed the method of graph signal processing
using the amount of change in active power for event classification
and the features in the database to identify and label the event.
More importantly, the development of AMI  allows users to par-
ticipate in NILM, providing appliance information and gradually
forming a common database. Therefore, that appliance feature can
be directly obtained through the smart meter from the existing
database for modeling and training appliances. In Ref. [22], the
author applied NILM to the household based on the smart meter
infrastructure. The user sends the appliance information (active
power in different states, etc.) and registers it to the database
in the service provider via the smart meter. The service provider
then establishes the hidden Markov model (HMM)  for that house-
hold.

The voltage–current (V–I) trajectory is plotted based on the
steady-state voltage and current, and it is used to express
appliances’ electrical characteristics. High-order harmonic charac-
teristics, the phase angle difference between voltage and current,
and the electronic appliance conduction characteristics can be
obtained by calculating the V–I trajectory features, as detailed in
Refs. [23–25]. In Ref. [23], the authors selected the multi-classifier
parameters by using an enhanced variant of the differential evolu-
tion and compared the disaggregation accuracy with the different
classifier selections. In Ref. [24], the authors selected eight trajec-
tory characteristics and used hierarchical clustering for the load
classification. The results demonstrated that trajectory features
yielded higher classification accuracy than the traditional current
eigenvector approach. The physical meanings of the trajectory
have been illustrated in the literature; however, an approach to
quantifying the trajectory features has not been defined. There-
fore, this paper extracts the V–I trajectory of individual appliances
based on the event. According to the analysis of the physical
meaning of the trajectory features, an approach to quantifying
ten trajectory features is proposed, and support vector machine
(SVM) multi-classification algorithm is adopted for load recogni-
tion.

The main aspects of this paper are as follows: (1) proposing a
V–I trajectory extraction approach based on the steady-state data
before and after an event. The number of trajectory features is
expanded, and ten trajectory feature quantization approaches are
presented. (2) The algorithm is tested with the data in both the
REDD database and laboratory data, and the results are compared
with other algorithms that select the transient waveform and vari-
ation of the active power and the active and reactive power (PQ) in
both the time and wavelet domains as load features.

The remainder of this paper is organized as follows. In Sec-
tion 2, the NILM framework is reviewed. Section 3 introduces the
event detection process. The V–I trajectory and its feature extrac-
tion approach are defined in Section 4. Section 5 describes the SVM
multi-classification algorithm used for load recognition. Experi-
mental studies are reported in Section 6. Finally, the conclusions
are given in Section 7.

2. NILM framework

The basic steps in NILM are as follows (as shown in Fig. 1):

1) Data acquisition and processing: electrical data, including cur-
rent, voltage, and power data, are obtained from a smart meter,
and then, the raw data are de-noised.

2) Event detection: The state-switching process of an appliance
over a certain period of time is an event. The occurrence of an
event is accompanied by variations in power and current, and it
is typically detected by comparing the variation in the electrical
data during that duration with a predetermined threshold.

3) Feature extraction: The load features can be extracted based
on the load signatures using different algorithms (e.g., Fourier
transform). The load features provide load signature information
from a numerical perspective to distinguish different appliances
and are typically expressed in the form of vectors, the dimen-
sions of which are determined by the number of features.

4) Load recognition: The load recognition process matches the load
features with the features in the database and then obtains the
appliance switching mode in the database corresponding to the
current event.

3. Event detection

The apparent power continues to change during the appliance
state transition. Fig. 2 illustrates the apparent power change while
an appliance is started. The main part of that appliance is a motor,
which starts with the impulse current. Take Fig. 2 as an example
to illustrate the method of event detection. The step size is set
to R (R = 1 s in this paper), and the apparent power at t s is St . If
�St > Son1 (at 4 s in Fig. 2), where �St = St+1 − St , the event detection
begins and continues to calculate �St+1, �St+2. . .,  until �St+d < Son2.
If St+d − St < Son2, it is assumed that the device has a state transition
at t ∼ t + d s where the event process start time ton is t s, and the
event process end time toff is t + d s. d represents the duration of the
event. The event detection is summarized by (1). ton and toff deter-
mine the sampling time of the voltage and current waveform for
extracting the V–I trajectory in next section, so event detection is
an indispensable step for V–I trajectory extraction.

|�St | ≥ Son1&&|�St+1| ≥ Son1&&...&&|�St+TR−1| ≥ Son1

&&|�St+TR| < Son1&&|�St+TR+1| < Son1&&|St+TR − St | ≥ Son2

(1)

4. V–I trajectory features

4.1. Trajectory extraction

The quantization process of trajectory features is a numerical
operation of the points on the trajectory; thus, the accuracy of the
trajectory data will have a direct effect on the feature extraction and
load recognition process. The existing literature does not discuss
the trajectory extraction approach. However, in cases in which the
meter sampling frequency is limited and the raw data contain noise,
it is necessary to process the voltage and the current data before
plotting the trajectory.

Consider a cycle of voltage and current waveform data per sec-
ond during T seconds before ton and T seconds after toff. VVon, VVoff,
IIon, and IIoff represent the voltage and current data sets in T cycles
(seconds) before and after the event, respectively. Since the extrac-
tion of the V–I trajectory needs to operate on different cycles of
voltage and current waveforms, the initial phase angle of VVon,
VVoff, IIon, and IIoff in each cycle must be the same. In this paper,
the fundamental voltage phase angle is taken as the reference to
ensure that. Taking a cycle of voltage waveform data per second for
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