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a  b  s  t  r  a  c  t

This  paper presents  a new  concept  for  an  approach  to  deal  with  measurements  contaminated  with gross
errors,  prior  to  power  system  state  estimation.  Instead  of a simple  filtering  operation,  the  new  procedure
develops  a  screen-and-repair  process,  going  through  the  phases  of detection,  identification  and  correction
of  multiple  gross  errors.

The  method  is  based  on  the  definition  of the  coverage  of the  measurement  set  by a tiling  scheme
of 3-overlapping  autoencoders,  trained  with  denoising  techniques  and  correntropy,  that  produce  an
ensemble-like  set  of  three  proposals  for each  measurement.  These  proposals  are  then  subject  to  a  pro-
cess of fusion  to produce  a vector  of  proposed/corrected  measurements,  and  two  fusion  methods  are
compared,  with  advantage  to the Parzen  Windows  method.  The  original  measurement  vector  can  then
be recognized  as  clean  or diagnosed  with  possible  gross  errors,  together  with  corrections  that  remove
these  errors.  The  repaired  vectors  can then  serve  as  input  to  classical  state  estimation  procedures,  as  only
a small  noise  remains.  A test  case  illustrates  the  effectiveness  of  the  technique,  which  could  deal  with
four  simultaneous  gross  errors  and  achieve  a  result  close  to  full  recognition  and  correction  of  the  errors.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A control center, either in transmission or distribution, can-
not function without some kind of state estimation. The huge
transformation being witnessed at the distribution level, with the
emergence of distributed (and uncontrolled) generation, has just
reinforced the need of system operators (TSO and DSO) to be able
to monitor, at all times, the state of the networks, However, espe-
cially when closer to the distribution level, but also with PMU
measurements due to wrong or absent time-tagging, gross errors
tend to appear in the measurement sets observed at any moment.
It may  be stated that handling this problem properly is one central
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concern in the architecture of a modern SCADA/EMS-DMS system.
Handling one gross error has had, in the past, some success with
classical techniques working on residuals (the difference between
measurements and estimated values), but the same cannot be said
about handling multiple errors — and with a widespread moni-
toring including distribution, the ability to handle multiple gross
errors becomes a necessity.

The classical and most known methods to identify gross errors
are: the Chi-squares Test, the Largest Normalized Residual Test
and the Hypothesis Testing Identification [1,2]. These methods are
applied only after each estimation iteration and are centered on
the residuals. The obvious conceptual flaw is that they rely on
post-processing and depart from contaminated results. As a con-
sequence, they exhibit some failure rate in detecting bad data.
Moreover, many of these methods depend on different assump-
tions regarding the system and the errors characteristics. Some of
these assumptions are controversial and generate debate, mainly
about the gaussianity [3] and the independence [4,5] of the errors.

An additional difficulty derives from the fact that, in many of
the conventional error handling methods, there is no provision to
recover an assumed erroneous measurement, and this is simply
removed from the data set [1,2]. This reduces the redundancy of the
input measurement set, discards information that could be useful
and, in severe cases, hampers the observability of the network.
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Meanwhile, in a completely alternative path, the work reported
in Ref. [6] made a robust demonstration that neural networks with
special architectures, denoted autoencoders, are tools that, prop-
erly handled, can learn the supporting manifold of system state
patterns — and then they can be used to correct measurement vec-
tors that either have components with gross errors or are corrupted
and exhibit missing signals in some of the components.

There was also a lesson learned: that a very large autoencoder,
representing at its input the whole set of measurements, becomes a
cumbersome artifact to be trained. But, at the same time, the need
for such a huge neural network is also questioned, and a distinct
conceptual model was proposed (also in Ref. [7]): a mosaic of adja-
cent local areas representing the network, each cell being observed
by an autoencoder. The advantage of this scheme would derive from
the small scale of each neural network to be tuned, from the fact
that steady state causes have only visible local effects and from the
easy adaptation of this concept to system changes, because only
local retraining would be necessary in case of structural changes of
the network.

This paper is devoted to exploring the potential of autoencoders
to act as pre-filters to the measurement vector, and thus perform
the three necessary functions of an ideal system: detection, identi-
fication and quantification. Here is the definition of these terms:

- Detection: the ability to signal out that a data set contains bad
data

- Identification: the ability to pinpoint which measurement is cor-
rupt

- Quantification (or repair, or correction): the ability to estimate
the amount needed to be added to the identified corrupt mea-
surement to bring it to a value coherent with the physical system
under observation (in the power systems case, this should be the
Kirchhoff laws).

If these three functions are successfully performed, the data
set remains intact (albeit corrected), no observability is lost and
classical state estimation methods can even take on from there, if
required. No post-processing will be needed.

There are some guidelines to be followed, if a successful method
is devised: it must be fast enough to be applied in real-time; it
should be non-parametric, i.e. independent of the network or mea-
surement parameters or any error assumption; it should deal with
the possibility of having multiple errors originating from the same
cause and not being independent; and it should be applied in a pre-
processing fashion. A new form of efficient data pre-filtering would
result.

The concept described in this paper has the autoencoder as a
common trait with the work in Ref. [6]. However, apart from this,
it displays distinct options and choices, makes use of a different
mix  of algorithms, based on computational intelligence with ele-
ments of information theoretic learning, machine learning and data
fusion, and proposes a different arrangement for the mosaic of
autoencoders observing the network — instead of a tessellation,
an overlapping tiling in now used, taking advantage of having the
same node monitored by more than one autoencoder. The results
of such a new concept are impressive, in handling multiple gross
errors.

2. Fundamental concepts

As the technique described in this paper involves a set of con-
cepts, the following sections will make an abridged reference to the
most important.

2.1. Parzen Windows

The Parzen Windows technique [8] is a non-parametric method
to infer an approximate pdf − probability density function p̂ (y),
directly from discrete data, expressed as:

p̂ (y) = 1
|T |

∑
yj ∈ T

Kj
(
y − yj

)
(1)

where Kj represent kernel functions centered on the T points in a
sample of instances Y.

The most used kernel function is the Gaussian kernel, as it is
smooth and hence the density function also varies smoothly, and
is defined as:

G� (x) = e−x2/2�2

�
√

2�
(2)

where � is denoted as the window size.

2.2. Correntropy

The correntropy V� for two  discrete random variables X and Y
can be written as:

V� (X, Y) = 1
n

n∑
i=1

G�
(
xi − yi, �2I

)
(3)

where k�(xi − yi, �2I) is a Gaussian kernel with size �. In Ref. [9], the
concept of correntropy is extensively discussed as a localized sim-
ilarity measure. Correntropy has a relation with information with
information entropy and a set of interesting properties [10–12].
Among these, it is interesting to note that correntropy corresponds
to the probability of having X = Y — it is the integral of the marginal
distribution of the joint (X,Y) distribution, obtained for the condi-
tion x = y. If we write εi = xi − yi, we  can define the correntropy of an
error distribution.

In the training of mappers, the MCC  — Maximum Correntropy
Criterion, is defined as:

max  V� (ε) = 1
n

n∑
i=1

G�
(
εi, �2I

)
(4)

where �2I represents the covariance matrix (assumed with inde-
pendent and equal variances in all dimensions). The kernel size acts
as an observation window and provides an automatic mechanism
to eliminate the effect of outliers, being intrinsically different from
the conventional techniques that use some sort of threshold.

2.3. Quadratic Mutual Information

The Quadratic Mutual Information (QMI) can be interpreted as
a similarity criterion. It is based on Renyi’s definition of Entropy,
and bears resemblance to Shannon’s Mutual Information [13,14],
which is a standard measure of statistical dependence of ran-
dom variables. The QMI  uses Euclidean distance instead of the
Kullback–Leibler divergence and has the advantage of being able
to be easily integrated using Parzen Window method, if needed. It
is, for some purposes, a simple way to estimate mutual information,
with a significant improvement in computing time and, addition-
ally, it allows to achieve an efficient non-parametric estimation
requiring no prior assumptions.

The Quadratic Mutual Information was  proposed as the Cauchy-
Schwarz divergence between the joint and the product of the
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