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Participation of plug-in electric vehicles (PEVs) is expected to grow in emerging smart grids. A strategy
to overcome potential grid overloading caused by large penetrations of PEVs is to optimize their battery
charge-rates to fully explore grid capacity and maximize the customer satisfaction for all PEV owners. This
paper proposes an online dynamically optimized algorithm for optimal variable charge-rate scheduling
of PEVs based on coordinated aggregated particle swarm optimization (CAPSO). The online algorithm is
updated at regular intervals of At=5min to maximize the customers’ satisfactions for all PEV owners
based on their requested plug-out times, requested battery state of charges (SOCreq) and willingness
to pay the higher charging energy prices. The algorithm also ensures that the distribution transformer
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Coordinated aggregated PSO is not overloaded while grid losses and node voltage deviations are minimized. Simulation results for
Smart grid uncoordinated PEV charging as well as CAPSO with fixed charge-rate coordination (FCC) and variable

charge-rate coordination (VCC) strategies are compared for a 449-node network with different levels of
PEV penetrations. The key contributions are optimal VCC of PEVs considering battery modeling, chargers’
efficiencies and customer satisfaction based on requested plug-out times, driving pattern, desired final
SOCs and their interest to pay for energy at a higher rate.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

High-tech developments in the automotive technology, grow-
ing environmental concerns in oil prices have triggered the advent
of plug in electrical vehicles (PEVs). However, large fleets of PEV
charging will require additional electric power demand that may
lead to undesirable peaks in power consumption, transformer over-
loading, and interruptions. A potential solution is using online
and/or offline PEV charging coordination strategies [1-4]. Ref. [3]
proposes real-time PEV coordinated charging in residential distri-
bution systems to reduce costs of power generation and losses. Ref.
[4] presentsreal-time PEV charging/discharging coordination with-
out considering customer preferences and variable charge-rates.

Ref. [5] proposes an online auction protocol such that vehicle
owners use agents to bid for the charging opportunities. However,
all PEVs have the same fixed charge-rate which is not usually the

* Corresponding author.
E-mail addresses: Somayeh.hajforoosh@postgrad.curtin.edu.au,
S.hajforoosh@gmail.com (S. Hajforoosh), m.masoum@curtin.edu.au
(M.A.S. Masoum), s.islam@curtin.edu.au (S.M. Islam).

http://dx.doi.org/10.1016/j.epsr.2016.08.017
0378-7796/© 2016 Elsevier B.V. All rights reserved.

case in practical applications as vehicles have different battery and
charger types, and ratings. Ref. [6] presents online coordination of
PEV charging and discharging in a small geographic area based on
the unrealistic assumption that no PEVs will arrive when a charg-
ing schedule is made. Ref. [7] analyzes the performance of optimal
PEV charging coordination including customer satisfaction without
considering variable charge-rates. Refs. [8,9] focus on maximiz-
ing aggregator revenue without carefully addressing customers’
preferences and may not necessarily lead to maximum benefit for
customers. Alonso et al. [10] designed the PEV scheduling to fill
the valleys of the residential load profile during periods of lower
load demands to avoid vehicle charging during peak load hours
using a genetic algorithm. In addition, Nguyen and Le [11] pre-
sented an optimization problem that aims to minimize the total
cost of energy of each PEV user. This work considers time-varying
electricity prices and performs daily scheduling. Also, a real-time
scheduling method of PEV charging loads is proposed in Ref. [12]
to increase voltage security margin in a low-voltage distribution
system. A strategy is proposed in Ref. [13] to mitigate the adverse
impacts that uncontrolled charging of the PEVs impose on the
host power system. However, Refs. [10-13] do not include vari-
able charging rates and ignore battery and charger efficiencies. Ref.
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Nomenclature
Index
ij Counters
m Node number
n Total number of nodes
Parameters

op, ay1 and oy, Coefficients used to adjust the slopes of the
penalty functions

Bid(Aty, i) The price that the ith PEV owner is willing to pay
at current time slot ($/kW h))

Bidyax (At,) Maximum offered bid by all existing PEVs at
current time slot ($/kW h)

C Ratio of charging or discharging current in A to the
capacity of battery in Ah

CRM™*  Maximum charging rate for the ith PEV (A)

Dmax (At,) Maximum demand level that would normally
occur without any PEVs during a day where selected
to be 0.84 MW corresponding to the maximum load
for the selected DLC (MW)

IReted  Rated charger current for the ith PEV (A)

k1, ko, k3 Coefficients used to adjust the objective function
based on the priority

L; Trip path for jth PEV (km)
Lmax Rated length path that each type of PEVs can trip
(km)

Npey (At,) Number of available PEVs for current time slot
nen (CRES (Aty)) Charger efficiency for the ith PEV at the
best charge-rate (%)

Q; Rated battery ampere hour for the ith PEV (Ah)

R; Battery equivalent internal resistance for the ith
node (ohm)

Rm.m+1 Resistance of the line segment between nodes m and
m+1 (ohm)

SOCinitiai(i) State of charge of the ith PEV at plug-in time (%)
SOCreq(i) Requested SOC of the ith PEV (%)
Treq(i)  Plug-out time of the ith PEV (h)

Voc.i Open circuit voltage for ith node (V)
Vinin and Vimax  Lower and upper node voltage limits (per unit;
p.u.)

Ymm+1 Admittance of the line segment between nodes m
and m+1 (ohm)

Variables

Cs (Aty, i) Customer satisfaction level for current time slot at
ith node (%)

Cs (Aty,q,1) Customer satisfaction level for next time slot at
ith node (%)

CRf.’eSf (At,) Optimized charging rate for the ith PEV at cur-
rent time slot (A)

Dt (Aty) Total load at current time slot (MW)

DL (At,) Daily load at current time slot (MW)

FD (At,) Penalty function for demand (distribution trans-
former loading) at current time slot

FV (Aty) Penalty function for node voltage at current time
slot

I(Aty, i) Charging current for the ith PEV at current time slot
(A)

PLoad (At,) Base-load power at current time slot (MW)

Ppgy i (Aty) Consumed power for the ith PEV (kW)

SOC (Aty, i) State of charge of the ith PEV at kth time slot (%)

Tremain (Atg, i) Theremaining available time for charging the
ith PEV at current time slot (h)

Vi Terminal voltage for ith node (per unit; p.u.)
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[14] assumes that electric vehicles drivers are insensitive to charg-
ing costs and discharging benefits. In addition, in Ref. [15], the PEV
charging and wind power scheduling were integrated.

In Ref. [26], a cost minimizing strategy benefiting is proposed,
but does not consider fairness in charging for all PEVs. A real-
time charging coordination of PEVs based on hybrid fuzzy discrete
particle swarm optimization (PSO) was presented in Ref. [27]. In
addition, in Ref. [28] a multi-agent system that coordinates EV
charging in distribution networks has been proposed using a dis-
tributed control method. A multi-objective scheduling strategy is
formulated to charge a number of PEVs while a fuzzy solution is pro-
posed to achieve the best compromise between the two objective
functions in Ref. [29]. Moreover, Ref. [30] used the population-
based metaheuristics approach to solve the optimization problems.
Another study [31] also shows that optimizing the charging sched-
ule can reduce grid voltage drops and power losses as well as
optimizing the load profiles.

In performing PEVs charging coordination considering customer
satisfaction, some vehicles can submit requested plug-out times
along with the associated requested state of charges (SOCgeq). Meet-
ing these requirements is not a big problem when all the vehicles
plug-out at their requested departure times. However, when unex-
pected departures of PEVs occur, the conventional schemes such as
those proposed in Refs. [3-6], may not be able to provide accept-
able levels of satisfaction fairness among the users. Moreover, some
vehicles may not be fully charged at the end of charging horizon.
The problem can be resolved by using variable charging rates as a
strategy to adapt the power drawn by the charger from the grid to
the load, in order to fully exploit grid capability and provide a high
degree of user satisfaction.

While the objective functions of Refs. [14,15] are optimization
of aggregators’ income and the cost of energy without addressing
customers’ satisfactions. In Ref. [16], the variable-based charging
of PEVs is investigated; however, requested plug-out times and
customers’ preferences are not considered.

The main objective of this paper is to perform optimal PEV charg-
ing coordination to maximize all customers’ satisfactions without
exceeding grid constraints. This is done by (i) allowing customers to
specify their own charging demands including requested plug-out
times, desired departure SOCs and the higher electricity prices they
are willing to pay, (ii) developing an optimization problem where
the decision variables are the charging rates updated at time slots of
At=5min, and (iii) solving the problem using coordinated aggre-
gated particle swarm optimization (CAPSO). We rely on the quality
and speed of the CAPSO solution for accurate and quick online PEV
charging [24,34,35]. Among the artificial intelligent based algo-
rithms, the CAPSO is known to achieve near optimal solutions with
better convergence characteristics. Simulation results for uncoor-
dinated PEV charging, as well as CAPSO with fixed charge-rate
coordination (FCC) and variable charge-rate coordination (VCC) are
compared for a 449-node network. The proposed algorithm takes
into consideration random plug-in times, initial SOCs, requested
plug-out times, requested final SOCs and maximum charging rates
of PEV batteries.

2. Modeling of battery and charger for PEVs

Coordination of PEVs in smart grid requires accurate modeling
of its battery profile and charging characteristics. Many modern
battery chargers are capable of achieving high efficiency values;
however, their charging efficiencies indicate significant depen-
dency on the charging rate due to the internal battery resistance
[19-21]. This is particularly important in calculating the actual
stored energies and SOCs at different times during the charging
period. Fig. 1(a) shows a sample experimental data of the average
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