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a  b  s  t  r  a  c  t

Participation  of plug-in  electric  vehicles  (PEVs)  is  expected  to grow  in  emerging  smart  grids.  A strategy
to  overcome  potential  grid  overloading  caused  by large  penetrations  of  PEVs  is  to  optimize  their  battery
charge-rates  to fully  explore  grid  capacity  and  maximize  the  customer  satisfaction  for  all  PEV  owners.  This
paper proposes  an  online  dynamically  optimized  algorithm  for optimal  variable  charge-rate  scheduling
of  PEVs  based  on  coordinated  aggregated  particle  swarm  optimization  (CAPSO).  The  online  algorithm  is
updated  at  regular  intervals  of �t  = 5 min  to maximize  the customers’  satisfactions  for  all  PEV  owners
based  on  their  requested  plug-out  times,  requested  battery  state  of charges  (SOCReq)  and  willingness
to  pay  the  higher  charging  energy  prices.  The  algorithm  also ensures  that  the  distribution  transformer
is  not  overloaded  while  grid losses  and  node  voltage  deviations  are  minimized.  Simulation  results  for
uncoordinated  PEV  charging  as well  as  CAPSO  with  fixed  charge-rate  coordination  (FCC)  and  variable
charge-rate  coordination  (VCC)  strategies  are  compared  for  a  449-node  network  with  different  levels  of
PEV  penetrations.  The  key  contributions  are  optimal  VCC  of  PEVs  considering  battery  modeling,  chargers’
efficiencies  and  customer  satisfaction  based  on requested  plug-out  times,  driving  pattern,  desired  final
SOCs  and  their interest  to  pay  for energy  at a higher  rate.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

High-tech developments in the automotive technology, grow-
ing environmental concerns in oil prices have triggered the advent
of plug in electrical vehicles (PEVs). However, large fleets of PEV
charging will require additional electric power demand that may
lead to undesirable peaks in power consumption, transformer over-
loading, and interruptions. A potential solution is using online
and/or offline PEV charging coordination strategies [1–4]. Ref. [3]
proposes real-time PEV coordinated charging in residential distri-
bution systems to reduce costs of power generation and losses. Ref.
[4] presents real-time PEV charging/discharging coordination with-
out considering customer preferences and variable charge-rates.

Ref. [5] proposes an online auction protocol such that vehicle
owners use agents to bid for the charging opportunities. However,
all PEVs have the same fixed charge-rate which is not usually the
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case in practical applications as vehicles have different battery and
charger types, and ratings. Ref. [6] presents online coordination of
PEV charging and discharging in a small geographic area based on
the unrealistic assumption that no PEVs will arrive when a charg-
ing schedule is made. Ref. [7] analyzes the performance of optimal
PEV charging coordination including customer satisfaction without
considering variable charge-rates. Refs. [8,9] focus on maximiz-
ing aggregator revenue without carefully addressing customers’
preferences and may  not necessarily lead to maximum benefit for
customers. Alonso et al. [10] designed the PEV scheduling to fill
the valleys of the residential load profile during periods of lower
load demands to avoid vehicle charging during peak load hours
using a genetic algorithm. In addition, Nguyen and Le [11] pre-
sented an optimization problem that aims to minimize the total
cost of energy of each PEV user. This work considers time-varying
electricity prices and performs daily scheduling. Also, a real-time
scheduling method of PEV charging loads is proposed in Ref. [12]
to increase voltage security margin in a low-voltage distribution
system. A strategy is proposed in Ref. [13] to mitigate the adverse
impacts that uncontrolled charging of the PEVs impose on the
host power system. However, Refs. [10–13] do not include vari-
able charging rates and ignore battery and charger efficiencies. Ref.
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Nomenclature

Index
i,j Counters
m Node number
n  Total number of nodes

Parameters
˛D, ˛V 1 and ˛V 2 Coefficients used to adjust the slopes of the

penalty functions
Bid(�tk, i) The price that the ith PEV owner is willing to pay

at current time slot ($/kW h))
BidMax (�tk) Maximum offered bid by all existing PEVs at

current time slot ($/kW h)
C Ratio of charging or discharging current in A to the

capacity of battery in Ah
CRmax
i

Maximum charging rate for the ith PEV (A)
Dmax (�tk) Maximum demand level that would normally

occur without any PEVs during a day where selected
to be 0.84 MW corresponding to the maximum load
for the selected DLC (MW)

Ii
Rated Rated charger current for the ith PEV (A)

k1, k2, k3 Coefficients used to adjust the objective function
based on the priority

Lj Trip path for jth PEV (km)
Lmax
i

Rated length path that each type of PEVs can trip
(km)

NPEV (�tk) Number of available PEVs for current time slot
�ch

(
CRbest
i (�tk)

)
Charger efficiency for the ith PEV at the

best charge-rate (%)
Qi Rated battery ampere hour for the ith PEV (Ah)
Ri Battery equivalent internal resistance for the ith

node (ohm)
Rm,m+1 Resistance of the line segment between nodes m and

m+1 (ohm)
SOCinitial(i) State of charge of the ith PEV at plug-in time (%)
SOCReq(i) Requested SOC of the ith PEV (%)
TReq(i) Plug-out time of the ith PEV (h)
Voc,i Open circuit voltage for ith node (V)
Vmin and Vmax Lower and upper node voltage limits (per unit;

p.u.)
Ym,m+1 Admittance of the line segment between nodes m

and m+1 (ohm)

Variables
CS (�tk, i) Customer satisfaction level for current time slot at

ith node (%)
CS (�tk+1, i) Customer satisfaction level for next time slot at

ith node (%)
CRbest
i (�tk) Optimized charging rate for the ith PEV at cur-

rent time slot (A)
Dt (�tk) Total load at current time slot (MW)
DL (�tk) Daily load at current time slot (MW)
FD (�tk) Penalty function for demand (distribution trans-

former loading) at current time slot
FV (�tk) Penalty function for node voltage at current time

slot
I (�tk, i) Charging current for the ith PEV at current time slot

(A)
PLoad (�tk) Base-load power at current time slot (MW)
PPEV,i (�tk) Consumed power for the ith PEV (kW)
SOC (�tk, i) State of charge of the ith PEV at kth time slot (%)
TRemain (�tk, i) The remaining available time for charging the

ith PEV at current time slot (h)
Vi Terminal voltage for ith node (per unit; p.u.)

[14] assumes that electric vehicles drivers are insensitive to charg-
ing costs and discharging benefits. In addition, in Ref. [15], the PEV
charging and wind power scheduling were integrated.

In Ref. [26], a cost minimizing strategy benefiting is proposed,
but does not consider fairness in charging for all PEVs. A real-
time charging coordination of PEVs based on hybrid fuzzy discrete
particle swarm optimization (PSO) was presented in Ref. [27]. In
addition, in Ref. [28] a multi-agent system that coordinates EV
charging in distribution networks has been proposed using a dis-
tributed control method. A multi-objective scheduling strategy is
formulated to charge a number of PEVs while a fuzzy solution is pro-
posed to achieve the best compromise between the two  objective
functions in Ref. [29]. Moreover, Ref. [30] used the population-
based metaheuristics approach to solve the optimization problems.
Another study [31] also shows that optimizing the charging sched-
ule can reduce grid voltage drops and power losses as well as
optimizing the load profiles.

In performing PEVs charging coordination considering customer
satisfaction, some vehicles can submit requested plug-out times
along with the associated requested state of charges (SOCReq). Meet-
ing these requirements is not a big problem when all the vehicles
plug-out at their requested departure times. However, when unex-
pected departures of PEVs occur, the conventional schemes such as
those proposed in Refs. [3–6], may  not be able to provide accept-
able levels of satisfaction fairness among the users. Moreover, some
vehicles may  not be fully charged at the end of charging horizon.
The problem can be resolved by using variable charging rates as a
strategy to adapt the power drawn by the charger from the grid to
the load, in order to fully exploit grid capability and provide a high
degree of user satisfaction.

While the objective functions of Refs. [14,15] are optimization
of aggregators’ income and the cost of energy without addressing
customers’ satisfactions. In Ref. [16], the variable-based charging
of PEVs is investigated; however, requested plug-out times and
customers’ preferences are not considered.

The main objective of this paper is to perform optimal PEV charg-
ing coordination to maximize all customers’ satisfactions without
exceeding grid constraints. This is done by (i) allowing customers to
specify their own charging demands including requested plug-out
times, desired departure SOCs and the higher electricity prices they
are willing to pay, (ii) developing an optimization problem where
the decision variables are the charging rates updated at time slots of
�t = 5 min, and (iii) solving the problem using coordinated aggre-
gated particle swarm optimization (CAPSO). We  rely on the quality
and speed of the CAPSO solution for accurate and quick online PEV
charging [24,34,35]. Among the artificial intelligent based algo-
rithms, the CAPSO is known to achieve near optimal solutions with
better convergence characteristics. Simulation results for uncoor-
dinated PEV charging, as well as CAPSO with fixed charge-rate
coordination (FCC) and variable charge-rate coordination (VCC) are
compared for a 449-node network. The proposed algorithm takes
into consideration random plug-in times, initial SOCs, requested
plug-out times, requested final SOCs and maximum charging rates
of PEV batteries.

2. Modeling of battery and charger for PEVs

Coordination of PEVs in smart grid requires accurate modeling
of its battery profile and charging characteristics. Many modern
battery chargers are capable of achieving high efficiency values;
however, their charging efficiencies indicate significant depen-
dency on the charging rate due to the internal battery resistance
[19–21]. This is particularly important in calculating the actual
stored energies and SOCs at different times during the charging
period. Fig. 1(a) shows a sample experimental data of the average
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