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a  b  s  t  r  a  c  t

This paper  proposes  a decision  tree  (DT)-based  security  dispatch  method  applied  to  integrated  elec-
tric  power  and  natural-gas  networks  (IPGNs)  against  credible  contingencies  that  may  cause  violations.
Preventive  adjustments  to  the  optimal  electric  energy  generation  and  gas  production  are  carried  out
based  on  the security  regions  and  boundaries  of controllable  variables  determined  by the  DTs.  The  easily
interpretable  DT’s  rules that  describe  the security  regions  are  tractable  constraints  to  be included  in  the
optimization  routines  of electricity  generation  and  gas  production  rescheduling.  Some  specific  critical
contingencies  applied  to the IEEE  118-bus  test  system  integrated  with  the  15-node  natural  gas  network
are  taken  as examples  to  demonstrate  a promising  application  of the proposed  security  dispatch  method
to restore  IPGN  security.
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1. Introduction

In recent years, the integration of natural gas networks and elec-
tric power systems has increased significantly in many countries in
the world, due to the growth of gas thermal generation facilities,
mainly, the combined cycle plants [1,2]. As a result, the inte-
grated power and natural-gas networks (IPGNs) have become more
vulnerable to operational security problems, given the increasing
interactions between the gas supply and the electric generators [3].

When a IPGN is vulnerable in a given operating condition
due to a probable contingency event, for example, gas leakages
in pipelines and/or disconnection of power transmission lines,
preventive control actions become indispensable to retrieve the
security of both power and gas systems. Dispatching of generating
electricity and gas production, with security constraints, is one of
the preventive measures that can restore the IPGN from insecure
to secure operation state.

Some works in the technical literature present methods of solv-
ing problems of security-constrained optimal electric power and
gas flow dispatch, applied to IPGN. A formulation of the problem of
security-constrained unit commitment with a focus on short-term
operation of gas-electricity networks is presented in Ref. [4]. The
impact of failures on the gas network upon the electricity market
operation is analyzed. However, the model of the gas network is not
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considered in the formulation. In Ref. [5], the gas network model
is integrated to the security-constrained unit commitment model
to evaluate the impact of gas and electric power networks interde-
pendence on power system security. However, efforts to restore the
power system security are not considered. In Ref. [6], a methodol-
ogy for solving the security-constrained unit commitment problem
with natural gas network constraints is presented. The results show
that contingencies in the gas network can impact significantly the
security of power systems. However, no preventive action proce-
dure to restore security is proposed in case of happening probable
contingencies.

A new formulation of a mixed-integer linear programing
security-constrained optimal power dispatch and gas flow is pre-
sented in Ref. [7]. For this purpose, a methodology based on the
calculation of linear sensitivity factors is proposed to adjust the
control variables of the integrated gas and electricity networks, in
an optimal and fast way, such that the (N-1) contingencies do not
result in security violations. It is worth mentioning that Ref. [7]
uses a classic mathematical approach to fit a large set of control
variables to restore IPGNs security. On the other hand, the need for
coordinated operation among the power systems and gas networks
increases the complexity and uncertainty of the security dispatch,
once the gas networks are not directly supervised and controlled by
power systems operation centers. The advent of automatic machine
learning techniques provides a promising approach for setting con-
trol variables and their security limits on IPGNs operation.

In recent years, the data mining technique called decision tree
(DT) has been widely applied in the area of power systems for the
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Nomenclature

B Bus
F Gas flow
NED Non-electrical demand
N Node
P Active power
Pre Pressure
Pro Production
V Voltage

purpose of security evaluation and preventive control application
[8–10]. Particularly, the DT has as main advantage the interpretabil-
ity of knowledge learned from the database. The DT differs from
traditional techniques for the fact it finds the critical attributes and
their thresholds directly from a database using offline simulations.
The obtained thresholds not only help to build a predictive model,
but also generate security regions for system operators to adopt
control actions to ensure the system operation security. Besides
that, a DT significantly reduces the set of variables to be used in pre-
ventive control actions, allowing operators to stay more focused on
the really critical security-related variables of IPGN. Another strik-
ing aspect of DT is the fact that it presents a systemic description
regarding the critical variables that affect the IPGN security. The
systemic character is important, because the set of critical variables,
for each IPGN topological configuration, can be distributed by sev-
eral points of the electrical system and the gas network, often in
places that wouldn’t necessarily be so evident for the operator.

The main contribution of this paper consists of a dispatching
methodology with security constraints applied to IPGNs consider-
ing a systemic approach based on optimal load flow and gas flow
calculation with security regions defined by DTs rules. In this arti-
cle, the security regions obtained from DTs are employed to provide
guidelines for the decision-making process of dispatching electric
power generation and gas production.

This methodology first chooses a few controllable IPGN
attributes selected by the offline trained DTs as the only contribu-
tors to be tuned during the preventive control process. DTs are then
trained to identify the security boundary for the purpose of sepa-
rating secure cases from insecure ones. The obtained boundary is
finally used as a guide to design preventive control strategies.

2. Decision tree and security regions

DT for sorting purposes is a supervised learning machine tool
to solve problems with high dimensionality data. The fundamen-
tal principle is to obtain a predictive model to rank a goal using the
attributes that contribute directly to this objective. The DT converts
a complex classification process in some “if-then” logical state-
ments, in accordance with the limits of the input attributes or their
linear combinations.

For training a DT to have a good performance, it is necessary,
first, to build a database consisting of a sufficiently large number of
cases. Each case is represented by a goal target (for example, secure
or insecure), and attributes, such as active and reactive power gen-
eration levels, gas production volumes in wells, etc. The DT is then
designed to represent a model for identifying critical attributes that
affect the objective target more effectively and directly.

The DT model has a binary structure with two  types of nodes, the
inner node with two successors and the terminal node without any
successor. For each terminal node, also named leaf, a classification
result will be assigned in accordance with the goal majority class,
as secure or insecure. The classification process begins from the
root node and terminates in a terminal node, where the result of

Fig. 1. A typical CART.

sorting is achieved. After the creation of the DT, a cutting process
is carried out for the removal of unnecessary nodes and, finally,
reducing the DT final size. The DT algorithm used in this paper is
known as classification and regression trees (CART) [11].

A typical grown CART looks like Fig. 1, which is resulted from a
series of node splits. Given a case represented by set of variables
(i.e., x1, x2,. . .)  for a particular operating condition, the class (i.e.,
Secure or Insecure) of the case can be predicted by dropping the
variables of the case downward from the root node to a terminal
node. A DT is grown by recursive splits of the learning cases at its
nodes. The fundamental idea of selecting each split is such that the
learning cases in each descendant node are purer than the parent
node. The optimal selection of splitting rules can be calculated by
repeated attempts to minimize the overall GINI impurity index [11].

The node impurity is maximal when all classes have equal dis-
tribution and it is a minimum when there is only one class. Given
a data set S, that contains n records, each having a class A, the Gini
index of S is given by Eq. (1),

Gini(S) = 1 −
m∑

i=1

pi[
A

n
]
2

(1)

where
pi—is the relative probability of class A in S.
n—is the number of records in S.
m—is the number of classes.
If S is partitioned into two  subsets S1 and S2, one for each link,

the Gini index of the partitioned data will be given by Eq. (2),

Gini(S|A) = n1

n
Gini(S1) + n2

n
Gini(S2) (2)

where
n1—is the number of examples of S1.
n2—is the number of examples of S2.
The off-line trained DTs select critical system attributes as good

system security indicators and help to build security regions for
situational awareness enhancement. The thresholds in the DTs also
provide security regions that define operating regions, as shown in
Fig. 2. The security region identified by the DT  is a simple inter-
section of the security regions set. With security regions and their
boundaries defined by the DT, the security margin can be defined as
the smallest distance between the operation point and the security
limit.

Two  types of DTs can be used to identify the security regions
and their contours: the orthogonal and oblique. The orthogonal
DTs divide the rules in rectangular regions which are called hyper
planes and are orthogonal to the axis in order to associate each
region to a class, while the oblique DTs divide the rules that are
defined by some linear combinations of attributes and their lim-
its, in non-rectangular regions, dramatically reducing the size of
the DT. DTs which cover the partition criterion, divide space P of
parameters related to critical attributes. For an orthogonal DT, each
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