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a  b  s  t  r  a  c  t

The  randomness  of  the  wind  source  is  a concerning  issue  for managing  power  plants  in  reliable  conditions.
High  values  of wind  speed  are  undesirable  since  wind  farms  provide  zero  power  for  values  greater  than
their  cut-off  thresholds.  Also,  the  mechanical  safety  of  the installations  can be  seriously  compromised
by  extreme  values  of wind  speed.  Therefore,  a reliable  estimation  of  extreme  values  of wind  speed  is
mandatory.  An  Inverse  Burr  distribution  is  proposed  as  an  useful  alternative  for  the probabilistic  modeling
of extreme  values  of  wind  speed.  Distribution  parameters  were  estimated  through  maximum  likelihood
and  moment  estimation  procedures,  and  through  a  new  proposal,  the quantile  estimation  procedure.
The  proposed  model  is  validated  on several  real  wind  datasets,  comparing  the  proposed  model  with
commonly-used  extreme  value  models.  Numerical  applications  showed  that  the  proposed  model  is  a
valid  and  feasible  alternative  to  the  classical  extreme  value  distributions  for  extreme  values  of  wind
speed.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Wind power production significantly increased in recent years
due to environmental, technological, and economic benefits [1,2].
However, the power output of a wind generator strongly varies
as the speed of the wind energy source varies; wind speed (WS)
is intrinsically a random variable (RV), since it depends on many
meteorological and orographic factors [3,4], and therefore the cor-
responding wind power is also a RV. The high penetration of
unpredictable, intermittent power sources in electrical networks
is a concerning issue in the optimal management of power net-
works [5,6], since many technical considerations (such as network
frequency regulation, grid energy balancing and power quality
assessment) must be addressed. In order to mitigate such kind
of issues, accurate wind power forecasting tools are needed; in
particular, reliable predictions of wind power could be useful in
many transmission system operations, such as unit commitment
and provision of ancillary services [7].

The randomness of WS  also has a great impact on the mechan-
ical reliability of wind power systems, since extreme values of
wind speed (EWS) may  damage sensible components of the struc-
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tures, such as towers and wind blades [8,9]. Wind turbine design
has recently exploited developments from aerospace and mate-
rial engineering and nuclear industry, in order to increase safety
and reliability levels [10,11]; however, local and national authori-
ties usually ask more and more for an evaluation of the safety and
risks of industrial activities, and this also holds for the siting of
new wind farms, as part of required reports on the related envi-
ronmental impact. In particular, the fatigue failure of the tower is a
concerning issue, and the stochastic nature of EWS  is usually used
as input in mechanical analysis [10].

Furthermore, values of WS  that are greater than the “cut-off”
value of the wind generator are generally undesirable, since the
electric generator has to be disconnected from the wind turbine
not to compromise the electrical section of the wind power sys-
tem; consequently, the “cut off” value of the generator must be
chosen according to the characterization of EWS  in the particular
location, since it has a great impact on aggregate power production
[9,11–14].

Then, considering both the disadvantages (no power output and
mechanical stress on the structures), the statistical characterization
and prediction of EWS  is mandatory in the decision-making pro-
cess when evaluating yearly output production for the wind power
system design [13], and also in real-time operating conditions in
order to implement some measures to reduce the corresponding
drawbacks.
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In relevant literature, many studies have dealt with the proposal
of accurate deterministic and probabilistic WS  and EWS  forecasting
tools [15–21]; as pointed out in Ref. [5], probabilistic WS  forecasts
can provide additional information concerning wind uncertainty
for economic operation and competitive trading, and therefore are
way more efficient than traditional, deterministic forecasts.

Motivated by these issues, this paper mainly focuses on prob-
abilistic EWS  characterization for a proper understanding of
destructive wind forces, which may  affect mechanical safety and
reliability of wind power systems; an estimation of EWS  is there-
fore proposed through statistical procedures [22,23] based on
“classical” maximum likelihood estimation (MLE) and moment
estimation (ME), and through a new proposal, the quantile esti-
mation (QE) which is sometimes easier to evaluate, implying in
particular cases a simple algebraic computation, while MLE  and
ME  methods show in some cases convergence issues.

The EWS  characterization is based upon a suitable Inverse Burr
distribution, which is typically used in extreme values studies
[24,25], but has never been used before for EWS. Indeed, many
works have dealt with the determination of the best probability
models for a proper characterization of WS  randomness, as dis-
cussed in Section 2. The choice of an incorrect model may  lead to
significant errors, especially in the estimation of upper and lower
WS quantiles or EWS  quantiles. This may  of course affect the eval-
uation of mechanical reliability of wind power structures, which is
the primary concern of this paper. Moreover, accurate wind speed
modeling is the first step to also achieve accurate wind energy
production estimation, since significant biases may  result from
assuming an incorrect model. The impact of these errors is even
more concerning when upper and lower WS  quantiles are to be
transformed into the corresponding quantiles of the wind power
density, since they are usually obtained through a cubic rule.

Therefore, the Inverse Burr distribution is compared to some
different distributions that have been widely acknowledged as suit-
able EWS  distributions, such as the Gumbel distribution and the
Inverse Weibull distribution [26].

The paper is organized as follows. Section 2 provides a brief
recall of commonly-used wind speed distributions, while Section
3 shows the selected distributions used to model EWS  and the
Inverse Burr proposal. Section 4 gives some hints on the Inverse
Burr estimation and identification. Section 5 shows the results of
our numerical applications to validate the proposed model, and our
conclusions are shown in Section 6. A list of symbols and acronyms
is provided in Appendix A.

2. Selected probability distributions for wind speed
stochastic characterization

The probabilistic characterization of WS  and EWS  is a chal-
lenging task in wind power production assessment, mechanical
safety, reliability and for wind gust prediction [27–30]. Also, once
the distribution has been selected for the particular application,
the estimation of the corresponding parameters is not exempt
from issues. Robustness is the main requirement of an estima-
tion method, in order to provide accurate estimates in different
conditions; indeed, in many applications, distribution parameters
quickly vary as some external factors (i.e., atmospheric conditions)
vary, and therefore a robust estimation prevents the parameters
from being widely over-estimated or under-estimated.

In the following, two of the most common WS  distributions are
briefly presented and discussed.

2.1. Weibull distribution

The Weibull distribution is the most used probability den-
sity function (PDF), since it usually fits the majority of observed
WS data [26,31–33]. The analytic expressions of Weibull PDF  and
cumulative density function (CDF) for a non-negative RV x are,
respectively:
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When Eqs. (1) or (3) are used to model WS,  the scale parameter ˇ
can usually be considered as a given number, since it is strongly cor-
related to the geographic location and, therefore, it can be assumed
as a known constant for a given site [32,33]. In particular, for  ̌ = 2
the Weibull distribution falls into the well-known Rayleigh dis-
tribution. Therefore, a Weibull distribution with constant shape
parameter  ̌ = 2 is implicitly assumed by selecting a Rayleigh dis-
tribution as a suitable model for WS (e.g., in Ref. [33]). Parameter ˛
(or � alternatively) varies instead as the meteorological conditions
vary, and therefore its estimation is way more challenging.

Weibull distribution proved its suitability in different condi-
tions for a rough characterization of WS;  however, it does not
perform well for EWS, since lower tail usually does not fit well,
and therefore upper quantiles could be severely underestimated or
overestimated [28,29,34]. Also, this problem is way more challeng-
ing if the size of the available dataset of WS  measurements is not
particularly large; in fact, EWS  are not so frequent, and therefore it
is not common to find sufficient samples for an accurate estimation
of upper quantiles. Then, other distributions were proposed to cope
with this problem.

2.2. Burr distribution

Burr distribution [26,28,29] is often selected in WS  applica-
tions. Burr distribution was obtained in Ref. [33] from a mixture
of Weibull distributions, considering a parameterization of several
related meteorological variables, such as temperature and pressure.
The variations of these external variables have a great impact on the
parameter � in Eq. (3), as said before. Then, let’s consider the shape
parameter  ̌ as a constant and the parameter � as a RV �,  modeled
in a Bayesian approach [35,36] through a Gamma PDF:

g(�|ı, �) = �ı�ı−1

�
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ı
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where � is the rate parameter and ı is the shape parameter, both
defined as positive numbers, and � ( · ) is the Gamma function.

Using the total probability theorem, the unconditional CDF can
be expressed as:
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+∞∫

0
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