ELSEVIER Contents lists available at ScienceDirect ## **Electric Power Systems Research** journal homepage: www.elsevier.com/locate/epsr # A control plan for the stable operation of microgrids during grid-connected and islanded modes Majid Mehrasa^a, Edris Pouresmaeil^b, Bo Nørregaard Jørgensen^b, João P.S. Catalão c,d,e,* - ^a Young Researchers and Elite Club, Sari Branch, Islamic Azad University, Sari, Iran - ^b Centre for Energy Informatics, University of Southern Denmark, Odense, Denmark - ^c University of Beira Interior, R. Fonte do Lameiro, Covilha, Portugal - d INESC-ID, R. Alves Redol, Lisbon, Portugal - e IST, University of Lisbon, Av. Rovisco Pais, Lisbon, Portugal #### ARTICLE INFO #### Article history: Received 31 January 2014 Received in revised form 6 May 2015 Accepted 8 July 2015 Keywords: Microgrid Distributed generation (DG) Grid-connected mode Islanded mode Voltage source inverter (VSI) Lyapunov control theory #### ABSTRACT This paper presents a control technique that enhances microgrids stability during the grid-connected and islanded modes. The proposed technique is compared with several existing control strategies in the context of microgrids integration into smart grids. The Lyapunov control theory is utilized in this paper to investigate the operation stability of DG units operating along with the utility grid. As the main contribution, the proposed technique compensates for the instantaneous variations of the reference current components of DG units in the ac-side of the converters. The presented method also considers and properly addresses the dc-voltage variations in the dc-side of the interfacing system. Under the proposed control strategy, DG units are able to deliver active and reactive power to the local loads and/or the main grid in fundamental and harmonic frequencies, with a fast dynamic response and without any interruption. Several simulation scenarios are carried out to demonstrate effectiveness of the proposed control strategy in microgrids during the transient and steady-state operation. © 2015 Elsevier B.V. All rights reserved. #### 1. Introduction The renewable energy sources integration in the form of distributed generation (DG) provides several benefits for the utility grid considering the environmental regulations and the cost of power generation [1]. Integration of DG units into the main power grid can improve the power quality and increase the reliability of the electricity supply by mitigating the problems associated with the peak demand loads and the grid failure. Compared to individually operated DGs, a systematic integration of DG units, in the form of a microgrid, can further increase the grid reliability and power quality [2,3]. A microgrid can operate either in the grid-connected or islanded mode; for each operation mode, several control techniques have E-mail address: catalao@ubi.pt (J.P.S. Catalão). been developed to perform active and reactive power sharing as well as frequency and voltage regulation [4,5], such as potential-function based method for secondary and tertiary control of a microgrid [6], unit output power control (UPC) and feeder flow control (FFC) [7], power management strategies [8], droop-control concepts with L_1 control theory [9], and other proposed control strategies [10–12]. In [13], two distinct strategies are discussed for controlling the active power and frequency of multiple DG units in a microgrid. Another control strategy is proposed in [14] for the integration of microgrids into the main power grid, and a voltage-control technique is presented in [8]. In [15], a power control and sharing technique is discussed for the electronically coupled DG units, in which the output active and reactive power of DG units can be properly controlled in both the islanded and grid-connected modes. A two-degree-of-freedom (DOF) controller is utilized for a DG-based system as an uninterruptible power supply (UPS) to keep the voltage of AC bus at the desired value in presence of the stochastic behaviour of the loads [16]; this proposed DG model demonstrates a smooth transition from the grid-connected mode to the islanded mode. In [17,18], a control strategy is proposed based on the spatial repetitive controller (SRC) that utilizes the Lyapunov direct method to control the power consumption of the loads, maintaining the Abbreviations: WTS, wind turbine system; DG, distributed generation; SVPWM, space vector pulse width modulation; PCC, point of common coupling; S, switch; CHP, combined heat and power; CC, capacity curve; VSI, voltage source inverter; DLCM, direct lyapunov control method; LPF, low pass filter; PMSG, permanent magnet synchronous generator; PI, proportional-integral. ^{*} Corresponding author at: University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha, Portugal. Tel.: +351 275 329914; fax: +351 275 329972. #### Nomenclature Indices 1,2 k a,b,c7 d,q #### Variables DG current components in abc frame $i_{\rm cki}$ dc-link voltage $v_{\rm dci}$ currents of filter capacitors in abc frame $i_{\rm fki}$ voltage at the PCC in abc frame v_k switching functions of DG units s_{ki} equivalent switching function of DG units $u_{\rm eaki}$ DG current components in dq frame i_{czi} voltage at the PCC in dq frame $v_{\rm zi}$ currents of filter capacitors in dq frame $i_{\rm fzi}$ equivalent switching function of DG units $u_{\rm eqzi}$ reference current components of DG units i_{czi}^* $\tilde{I}_{av_d}, \tilde{I}_{av_q}$ average values of reference currents reference frequency of DG unit f_i^* E_i amplitude of voltages at PCC E_i^* reference amplitude of PCC voltages Δf_i frequency variation of DG units variation of voltage amplitudes at the PCC ΔE_i dynamic state switching function U_{egzi} local load currents in dq frame i_{llz} main load current in dq frame $i_{ m mlz}$ $I_{\rm lld1}$ d-component of local load current in main fre- quency d-component of main load current in main fre- $I_{\rm mld1}$ quency slope of P - f curve m slope of Q - E curve n output mechanical power P_{mech} power coefficient C_p tip speed ratio λ β blade angle U_m wind speed mechanical angular velocity of generator ω_{m} machine voltages in d-q frame $v_{\rm zm}$ flux linkage amplitude λ_m ω_r angular frequency of the Stator Voltage V_z reference synchrony frame voltages completing d-component reference current $i_{\rm h1_{\rm di}}^*$ T_e electromagnetic torque u_{eqzi}^* reference switching function of DG units reference voltage of dc-link $v_{ m dci}^*$ maximum voltage amplitude at the PCC $v_{\rm mi}$ reference currents of filter capacitors i* fzi reference current of dc-link ı_{dci} average values of reference currents of DG I* avzi DG active power P_{DGi} DG reactive power Q_{DGi} average value of current in DG units i_{czi} average value of dc-link voltage $\tilde{v}_{ m dci}$ maximum active power of DG units P_{DGimax} maximum reactive power of DG units Q_{DGimax} reference active power of DG units P_{DGi}^* Q_{DGi}^{*} ΔP_{DGi} reference reactive power of DG units variation of active power in DG units ΔQ_{DGi} variation of reactive power in DG units harmonic current components of local load $i_{\rm lld}$ harmonic current component of main load $i_{\rm mld}$ #### **Parameters** L_{zm} machine inductance R_{zm} machine resistance rotor radius Α wind turbine rotor swept area air density O R_g resistance of utility grid inductance of utility grid L_g R_{ci} resistance of DG unit inductance of DG unit L_{ci} capacitor of DG unit $C_{\rm dci}$ $C_{\rm fi}$ capacitor of filter grid angular frequency constant coefficients for the dynamic state switch- (α_i, β_i) ing functions load voltage at the reference value. A switching pattern is proposed in [19] that is based on the space vector pulse width modulation (SVPWM) and controls a single stage current source boost inverter in order to achieve a desired frequency and voltage magnitude for both the islanded and grid-connected modes. In [20], a combinatorial droop control technique is proposed that utilizes a derivative controller in the islanded mode and an integral controller in the grid-connected mode to maintain the microgrid desired operation: the small-signal stability of the controller is also investigated for both scenarios. In [21], a control technique is proposed based on the direct-voltage control and optimized dynamic power sharing to eliminate the disturbances and minimize the switching actions in transition operating condition; it is demonstrated that this technique enhances the performance of the active damping controller and improves the dynamic response of the system. The integration of distributed battery energy storages into a local microgrid system is discussed in [22,23]. In [24], a microgrid consisting of a hybrid combination of inertial and converter interfaced DG units along with a nonlinear and unbalanced load is considered; it is demonstrated that it is possible to improve the power quality for such a system by allocating a DG unit as a power quality compensator for the load. In [25], a feed-forward current control technique is proposed for a microgrid converter that allows the interfaced converter to change its injected active and reactive power in the grid-connected mode by changing the voltage component and frequency. Several other control algorithms have been proposed to address different challenges associated the microgrids operation [26–28]. In this paper, a new control technique is proposed based on the Direct Lyapunov Control Method (DLCM) to determine the stable operating region of DG units in a microgrid. The impact of the instantaneous variations of the reference current components in the ac-side of the converters is carefully considered; also, the dcvoltage variations in the dc-side of the interfaced converters are discussed and properly addressed. Including these two problems in the proposed method is the main contribution of this work compared to the other existing control techniques. The rest of the paper is organized into four sections. Following the introduction, general schematic diagram of the proposed microgrid system is introduced in Section 3 and its dynamic and state-space analysis are explained. Application of DLCM for the control and stable operation of DG units in different operating conditions is presented in Section 4. Moreover, simulation studies are carried out to demonstrate the efficiency and applicability of the developed control strategy in Section 5. Finally, conclusion is provided in Section 6. ### Download English Version: # https://daneshyari.com/en/article/7112522 Download Persian Version: https://daneshyari.com/article/7112522 <u>Daneshyari.com</u>