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Abstract: A new approach for modeling nonlinear impulsive system is suggested based on
nonstandard analysis. Basic properties of the hyperreals in nonstandard analysis are revisited,
and extended to define generalized functions via a sequence approach. The extended generalized
functions yield a non unique definition for a Heaviside function and the delta function, which
are used to characterize a nonsmooth vector field. By using these extended generalized function,
a causal way for characterizing jumps in discontinuous systems follows. An example for a simple
affine system illustrates the usefulness of this theoretical development.
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1. INTRODUCTION

Impulsive systems are a subclass of hybrid systems where
the dynamics of motions are modeled with a continuous
vector field in the presence of jumps. Earlier work on
impulsive differential equations and their dynamics can
be found in Lakshmikantham et al. (1989), Zavalishchin
and Sesekin (1997) and Yang (2001). These works have
successfully build a theory with formal definitions and
initial assumptions on the impulsive systems. In addition,
fundamental analysis on the system properties of the
impulsive systems was thoroughly analyzed in the book,
Haddad et al. (2014). Beyond the theory, it extends to the
applications in biological system and ecological system in
Grognard (2014),Verriest (2003) and Verriest and Pepe
(2009). Furthermore, a numerical approach on solving
ODEs with discontinuous vector fields can be found in
Dieci and Lopez (2012) and Dieci and Guglielmi (2013).

Generally, there are two types of impulsive system; one
with the time of jumping events specified and the other
where switching times are implicitly determined by addi-
tional state dependent dynamics. By using the classical
definition in Lakshmikantham et al. (1989), the impulsive
dynamics is an interaction between the continuous dynam-
ics and the state jumps. The formulation of the impulsive
system equation for a scalar case are given as

ẋ(t) = f(x(t), u(t)) if t ∈ T \
∞⋃
i=0

ti (1)

x(ti+) = g(x(ti−), u(ti−)) if t ∈
∞⋃
i=0

ti. (2)

The functions f and g are a continuous functions from
R×R to R where the domain is T ⊂ R. The sequence {ti}i
are times for resetting the state, and x(ti+) := lim

t
>→ti

x(t)

and x(ti−) := lim
t
<→ti

x(t) are the right and left limit

points at ti.

The above equations successfully describe how the instan-
taneous jump should be modeled. However, this classical
formulation requires a predefined jump behavior, and so
should be called an effect model, since the dynamics are
described without modeling the cause of the instantaneous
changes.

An exceptional example is when f(x, u) := Ax + Bu is
a linear function and g(x(ti−), u(ti−)) := gi + x(ti−) for
some constants A,B and gi. If (A,B) is reachable, no ad-
ditional structure is needed as the gi may be generated by
general impulsive input u fed through the read-in matrix
B. The above equation can now be modeled without the
state jump equation by using the weighted delayed impulse
train, as a causation.

ẋ(t) = Ax(t) +B
∞∑
k=1

n−1∑
i=0

ui,kδ
(i)(t− tk) (3)

where {ui,k} are corresponding control constants satisfying
the effect equation and δ(i)s are the i−th derivatives for
delta. This example displays that the singular control can
be used to design a cause of the instantaneous changes;
here we call such a model a causal model.

Therefore, to have a full control on the behavior of the
effect in more general cases, there is an urge for extending
the usage of singular control to the nonlinear cases. How-
ever, applying the singular control in nonlinear systems
encounters a critical problem since the singular function
defined by Schartz distribution have limitations. The pow-
ers of δ and the multiplication of δ with a non-smooth
function are ill-defined in the Schartz distribution. More
details can be found on Gelfand and Shilov (1969).

The deficiency in the Schwartz distribution theory have
been overcame by the new generalized function given by
Colombeau (2000) and Colombeau (2011), which have rig-
orously defined an algebraic structure on the set of distri-
butions. In Todorov and Vernaeve (2008), it is shown that
the theory of Colombeau algebra can also be interpreted in
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the language of the non standard analysis(NSA) which was
first introduced in Robinson (1967). The application of this
generalized function to the ordinary differential equation
can be found in Colombeau (2011), and Kunzinger and
Steinbauer (1998) have adapted the Colombeau algebra to
an impulsive gravitational wave equation. In this paper, we
also suggest a framework to define the generalized function
and its multiplications using the extended time line in
NSA.

Another approach to define a causal model for nonlinear
impulsive systems is to regard the singular control as
a sequence of functions. Miller (1996) and Orlov (1997)
have independently shown the existence of a causal model
for a nonlinear impulsive system by defining the singular
function as a sequence of integrable functions, {uk}, for
which its state solution converges to the effect equation,
Eqn 2, in the weak∗ topology. The paper suggests an

auxiliary system for the new state w, where
∫ 1

0
w(t)dt

equals to the jump in Eqn 2, in order to define the sequence
of functions {uk} uniquely. Further research based on
this formulation can be found in the books in Miller
and Rubinovich (2003) and Orlov (2008). In addition, a
sequence based causal model for nonlinear systems has also
been studied in Verriest (2014), Bressan Jr and Rampazzo
(1991) and Aronna and Rampazzo (2014). Especially,
Verriest (2014) briefly showed a connection to the NSA,
which will be formally defined and extended to the space
of generalized functions in this paper. See also Verriest
(1990).

In the following sections, the fundamental definitions in
NSA are recapped, and a framework to continuize the dis-
continuous functions is suggested. By using the continuiza-
tion, a new definition of a piecewise continuous function
and its derivatives, such as a δ function, is provided as
the extended function in NSA. Next, we show that the
multiplication of these functions is well defined and closed
in the newly defined space of functions. Finally, we apply
this framework to design a causal model for the nonlinear
impulsive system especially for the affine system.

2. PRELIMINARY

In this preliminary section, we define the basic operators
used throughout the paper, and summarize the fundamen-
tal definitions in NSA. See Goldblatt (1998) for details.

2.1 Basic Operators

Let C(R) be a set of continuous function in R and α ∈ R
be a fixed constant.

Definition 1. (Evaluation operator). A functional, σt :
RR → R is called an evaluation operator at time t ∈ R
if σt(x) = x(t) for an arbitrary function x ∈ RR.

By using the evaluation operator, we define the translation
and the scaling operator acting on a continuous functions.

Definition 2. (Translation operator and scaling operator).
Operators, Tα : C(R) → C(R) and Sα : C(R) → C(R), are
called translation and scaling operators by the factor α, re-
spectively, if σt(Tα(x)) = σt+α(x) and σt(Sα(x)) = σαt(x)
for ∀x ∈ C(R) and ∀t ∈ R.

The next lemma shows the commutation of these opera-
tors. Fix α, β ∈ R to be a constant.

Lemma 3. (a) Sα ◦ Sβ = Sβ ◦ Sα = Sαβ

(b) Tα ◦ Tβ = Tβ ◦ Tα = Tα+β

(c) Sα ◦ Tβ = T β
α
◦ Sα

(d) D ◦ Sα = αSα ◦D

Proof. The proofs are immediate from the definition.

In addition, throughout this paper, we use a new notation
for a geometric sequence. Suppose {s · rn} is a geometric
sequence with initial value s and the rate r, then 〈r, s〉 :=
{s · rn}.

2.2 Nonstandard Analysis

NSA is motivated from the construction of the reals, R,
from the rational numbers, Q, by taking the equivalence
classes of the space of the Cauchy sequences with rational
numbers. Similarly, the first objective of NSA is to give a
proper extension to the R space with the set of real-valued
sequences. Let RN be the set of real-valued sequences, and
P(N) be the power set on N. A filter on RN is a nonempty
collection of F ⊂ P(N) which satisfy the first two axioms.

• If A,B ⊂ F , then A ∩B ∈ F

• If A ∈ F and A ⊂ B ⊂ N, then B ∈ F

• For any A ⊂ N, either A ∈ F or Ac ∈ F
An ultrafilter is a proper filter which also satisfies the last
axiom. By using the Corollary 2.6.2 in Goldblatt (1998),
it can be shown that the equivalence relation ∼= on RN,

〈rn〉 ∼= 〈sn〉 iff{n ∈ N : rn = sn} ∈ F
is well defined where F is the ultrafilter on N, and {rn}
and {sn} are in RN. Let the equivalence class of a sequence
{rn} ∈ RN be denoted as 〈r〉.
Definition 4. The quotient set ∗R := {〈r〉 : {rn} ∈ RN} is
called the extended real space or hyperreal space, and the
members of ∗R are called a hyperreal number.

Since RN can have a sequence with repeated elements, the
real space R is a proper subspace of ∗R. Further, ∗R is
endowed with algebraic structure by defining addition and
multiplication by

〈r〉+ 〈s〉= 〈{rn + sn}〉 (4)

〈r〉 · 〈s〉= 〈{rn · sn}〉 (5)

and an order relation, <, by

〈r〉 < 〈s〉 iff {n ∈ N : rn < sn} ∈ F . (6)

Theorem 5. (Hyperreal space as a ordered field). The hy-
perreal space, 〈∗R,+, ·, <〉, is an ordered field with zero
〈0〉 and unity 〈1〉

Proof. See Theorem 3.6.1 in Goldblatt (1998).

One of the strong benefits of having an extended real space
is that now there exist elements which are infinitesimally
small and also there exist unbounded numbers.

Definition 6. (Infinitesimal and unlimited number). An el-
ement 〈{εn}〉 ∈ ∗R is called infinitesimal if A = {n ∈ N :
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