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Abstract: This paper presents a systematic numerical algorithm to design optimal Hso
continuous-time controllers to robustly stabilize periodic orbits for hybrid dynamical systems in
the presence of discrete-time uncertainties. A parameterized set of closed-loop hybrid systems is
assumed for which there exists a common periodic orbit. The algorithm is created based on an
iterative sequence of optimization problems involving Bilinear and Linear Matrix Inequalities
(BMIs and LMIs). At each iteration, the optimal Ho, problem is translated into a BMI
optimization problem which can be easily solved using available software packages. Some
sufficient conditions for the convergence of the iterative algorithm are presented. The power
of the algorithm is then demonstrated in designing robust stabilizing virtual constraints for
running of a highly underactuated bipedal robot with 7 degrees of underactuation in the presence

of impact model uncertainties.
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1. INTRODUCTION

The main objective of this paper is to present a systematic
numerical algorithm to design optimal H., continuous-
time controllers for robust stabilization of periodic or-
bits for a class of hybrid dynamical systems arising from
bipedal locomotion. The robustness is achieved against un-
certainty in the discrete-time dynamics of hybrid systems.
Models of bipedal robots are hybrid with ordinary differen-
tial equations (ODEs) to describe stance and flight phases
and discrete transitions to describe leg toe-off and impact
with the ground (Hurmuzlu and Marghitu, 1994; Grizzle
et al., 2014, 2001; Westervelt et al., 2007; Chevallereau
et al.; 2009; Ames et al., 2007; Ames, 2014; Spong and
Bullo, 2005; Spong et al., 2007; Manchester et al., 2011;
Dai and Tedrake, 2013; Gregg et al., 2012; Gregg and
Spong, 2008; Byl and Tedrake, 2008; Akbari Hamed and
Grizzle, 2014; Chevallereau et al., 2003; Morris and Griz-
zle, 2009; Sreenath et al., 2013; Collins et al., 2005; Byl
and Tedrake, 2009; Saglam and Byl, 2013).

While the problem of designing optimal H ., controllers for
complex systems is well studied in the literature (Gahinet
and Apkarian, 1994; Doyle et al., 1991), existing results
are tailored for stabilization of equilibrium points of ODEs
and not periodic orbits of hybrid dynamical systems. The
most basic tool to investigate the stability of period orbits
of hybrid systems is the Poincaré sections method (Grizzle
et al., 2001; Haddad et al., 2006; Parker and Chua, 1989;
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Haddad and Chellaboina, 2008). One of the most serious
limitations in employing the Poincaré sections approach
to design H, continuous-time controllers is the lack of
closed-form expressions for the Poincaré map and its Ja-
cobian matrices. In particular, they need to be calculated
numerically and this becomes a real challenge for hybrid
mechanical systems with high degrees of freedom and
underactuation.

Previous work in the literature made use of different ap-
proaches to stabilize hybrid periodic orbits. One of these
approaches employs multi-level hybrid controller struc-
tures. In this approach, the stability of the orbit is mainly
achieved by higher-level event-based controllers (Grizzle,
2006; Westervelt et al., 2007; Akbari Hamed and Grizzle,
2014; Sreenath et al., 2013). This approach may result
in a potentially large delay between the occurrence of
a disturbance and the event-based control effort. Other
approaches employed nonlinear optimization techniques
for the simultaneous design of periodic orbits and sta-
bilizing continuous-time controllers (Chevallereau et al.,
2009; Diehl et al., 2009). These approaches minimize the
spectral radius of the Jacobian of the Poincaré map or a
smoothed version of that and cannot address the optimal
Hoo control design problems. An alternative approach has
been developed based on the moving Poincaré sections
analysis and transverse linearization to design time (phase)
varying LQR controllers (Manchester et al., 2011; Shiriaev
et al., 2010). This latter approach has not been extensively
evaluated on legged robots.

The contribution of this paper is to create an iterative
optimization algorithm based on Bilinear and Linear Ma-
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trix Inequalities (BMIs and LMIs) to design optimal Ho
continuous-time controllers for hybrid models of mechan-
ical systems with high degrees of freedom and underac-
tuation. The algorithm acts as a powerful tool to design
a general form of robust optimal nonlinear controllers
including LQR and virtual constraints. Furthermore, it can
be effectively solved with available software packages. Our
previous work presented a non-iterative BMI optimization
framework for exponential stabilization of periodic walking
gaits (Akbari Hamed et al., 2014, 2015). Furthermore, a ro-
bustness analysis over two steps during stepping down/up
was presented for uneven ground walking. When extending
this approach to hybrid models of bipedal running, one
would need to apply the BMI optimization in an itera-
tive manner to stabilize the running gait. Furthermore,
the running models are more sensitive to impact model
uncertainties. This motivates us to present an iterative
robust stabilization algorithm to handle H., robustness
against impact model (i.e., discrete-time) uncertainties
over an infinite horizon of steps rather than two steps.
To do this, the current paper presents a new BMI frame-
work to design optimal H., controllers. Some sufficient
conditions for the convergence of the iterative algorithm
in stabilizing the hybrid periodic orbits are also presented.
The gait sensitivity norm was introduced in (Hobbelen
and Wisse, 2007) as a disturbance rejection measure and
demonstrated on a 2 DOF bipedal robot. This paper
provides additional results. In regards to feedback design,
the current paper presents a systematic Hoo algorithm to
reduce the sensitivity to impact models. Finally, the power
of the algorithm is demonstrated in designing optimal
Hoo nonlinear controllers for a 2D underactuated bipedal
runner with 7 degrees of underactuation.

2. ROBUST STABILIZATION PROBLEM

2.1 A Family of Parameterized Closed-Loop Hybrid Models

We consider a family of parameterized closed-loop hybrid
systems with one continuous-time phase as follows

ECIZ {j::fd(x,g)v x ¢S (1)

T = Az, ¢) +d, - €S,

where x € X represents the state variables and X C R"
is the state manifold. The continuous-time portion of the
hybrid system is given by the parameterized closed-loop
ODE # = f(z,¢), in which ¢ € = C RP is a vector of
adjustable constant parameters. In addition, = represents
a set of admissible parameters and the superscript “cl”
stands for the closed-loop system. Here, ' : X xZ — TX
is a smooth (i.e., C*) vector field, in which TX is the
tangent bundle of the state manifold X. The discrete-
time portion of the dynamics is then represented by the
parameterized reset law x+ = A(z™, &) +d, where A : X x
= — X denotes a C*™ switching map. d € D C R" is
also an unknown and additive discrete-time disturbance to
represent the uncertainty in the reset model. It is further
assumed that D contains the origin. In our notation, x~
and z+ denote the state variables just before and after
the reset event, respectively. The solutions of the hybrid
system (1) undergo an abrupt change according to the
reset law on the switching manifold S given by S :=
{z € X|s(z) =0}, where s : X — R is a C* real-valued
switching function satisfying the condition g—;(x) =% 0 for

Fig. 1. Tlustration of the closed-loop hybrid model (1)
with one continuous-time phase. The solid and dashed
curves correspond to the flows of the continuous-
and discrete-time dynamics & = f°(x,¢) and 2t =
A(x7,€) + d, respectively. The uncertainty in the
discrete dynamics is shown by the cloud around the
dashed curve.

Fig. 2. Illustration of a closed-loop hybrid model with two
continuous-time phases for bipedal running. Using
(Grizzle et al., 2014, Proposition 4), one can present
an equivalent hybrid system with one continuous-time
phase as in (1), whose reset map A can be expressed
as A := Ag_1 0 F0A1_,9, where F5 denotes the flow
of 3 = f§'(x2,€) (second phase) and “o” represents
the composition. In this model, the uncertainty d of
(1) can arise from uncertainties in Aq_9, Ay and
Fo as shown by the clouds.

all x € S. Figure 1 represents a geometric description for
the closed-loop hybrid model (1) in the state space. Figure
2 demonstrates that the hybrid model of bipedal running
with two continuous-time phases can be represented by an
equivalent hybrid system with one continuous-time phase
as given in (1).

The solution of the parameterized ODE i = f(x, ¢) with
the initial condition x(0) = z is denoted by (¢, zg, §) for
all t > 0 in the maximal interval of existence. The time-to-
reset function is then defined as T : X x = — R as the
first time at which the ODE solution ¢(t, zg, &) intersects
the switching manifold S, i.e.,

T (wo,€) :=1inf {t > 0] p(t,20,§) € S}. (2)
2.2 Invariant Periodic Orbit

Throughout this paper, we shall assume that the following
assumption is satisfied for the family of hybrid systems (1).

Assumption 1. Tt is assumed that there exists a common
period-one orbit O for the family of closed-loop hybrid
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