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a  b  s  t  r  a  c  t

One  of the  most  important  techniques  used  to study  long-term  energy  operation  planning  is the  stochas-
tic  dual  dynamic  programme  (SDDP).  In large  systems,  hydraulic  power  plants are  aggregated  in  so-called
equivalent  energy  systems,  where  the  inflows  into  hydro  reservoirs  are  represented  by the  affluent  nat-
ural energy  (ANE)  and  the stored  volumes  are represented  by  the  stored  energy.  The  stochasticity  of
energy  inflows  is  captured  by  the historical  series  ANE.  Currently,  ANEs  are  studied  using the  Box–Jenkins
methodology  to  fit  periodic  autoregressive  models  (PAR(p))  and  their order  (p).  A three-parameter  log-
normal  distribution  is applied  to  the  residuals  generated  via  PAR(p)  modelling  to  generate  synthetic
hydrological  series  similar  to the  original  historical  series.  However,  the  log-normal  transformation
incorporates  non-linearities  that affect  the  convergence  in  SDDP.  This  study  incorporates  the  bootstrap
statistical  technique  to determine  the  order  p  of  the  PAR(p)  model  to  generate  synthetic  scenarios  that
will  serve  as  a basis  for SDDP  application.  The  results  indicate  the  adherence  of the  proposed  method
on  the  operational  planning  of  hydrothermal  systems.  The  proposed  methodology  in  this  article  could
successfully  be applied  in hydro-dominated  systems  such  as  Brazilian,  Canadian  and  Nordic  systems.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The generation of a synthetic series or scenarios of afflu-
ent inflows is essential for representing the stochasticity of the
affluent inflows with respect to the operational planning process
of hydrothermal systems. This can be observed in the hydro-
dominated systems, like Brazilian, Canadian and Nordic systems.
As an example, the official model in the Brazilian electrical system
(BES) is based on a formulation that is based on equivalent energy
systems, the affluent inflows to the hydroelectric plants are trans-
formed into affluent natural energies (ANEs). Thus, synthetic series
of ANEs are generated instead of synthetic inflow series for each
hydro plant [1]. In the computational model officially used in Brazil,
the synthetic series are generated through a periodic autoregres-
sive model of order p, PAR(p), which must be adjusted each month
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due to the periodic characteristics of the inflows. Moreover, if there
are changes in the power generation configuration (such as addi-
tions of hydropower plants), then the series of energy inflows must
comply with the new capacity and the corresponding PAR(p) model
must be adjusted for this new situation.

Once the order and the coefficients of the PAR(p) model are esti-
mated, the synthetic series can be built using a residues matrix.
However, the structure of the PAR(p) model may  allow for the pres-
ence of negative values, which are impossible in practice. In other
words, a negative value in the synthetic series invalidates the solu-
tion of the optimization problem. To solve this problem, the official
model adopts a log-normal transformation to ensure that all the
values of the synthetic series of ANE are positive.

However, the lognormal transformation introduces non-
linearities [2] that can negatively impact the process of convergence
of the SDDP optimization model. The main objective of this study is
to address this convergence problem. To overcome the instability of
the optimization model due to these non-linearities, the log-normal
transformation is not used in this study; instead, the random
portion is sampled directly from the residues matrix using the Boot-
strap technique. This strategy tends to improve the convergence
of the optimization model [2] because it avoids the occurrence of

http://dx.doi.org/10.1016/j.epsr.2015.02.014
0378-7796/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.epsr.2015.02.014
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2015.02.014&domain=pdf
mailto:cristina.castro@ufjf.edu.br
mailto:andre.marcato@ufjf.edu.br
mailto:reinaldo@ele.puc-rio.br
mailto:ivo.junior@ufjf.edu.br
mailto:cyrino@puc-rio.br
mailto:tales.pulinho@engenharia.ufjf.br
dx.doi.org/10.1016/j.epsr.2015.02.014


34 C.M.B. de Castro et al. / Electric Power Systems Research 124 (2015) 33–46

non-linearity’s in the optimization process. The overall formulation
of optimization model and the convergence aspects are presented
in [3]. Ref. [4] is other article about stochastic dual dynamic pro-
gramming (SDDP), but it is applied to hydropower scheduling in
the Nordic countries.

Considering the previously described situation, the objective
of this study is to verify the efficacy of the bootstrap method-
ology in the determination of the order of PAR(p) models and
in the generation of the synthetic scenarios of the ANE series.
In addition, these synthetic scenarios were used during the opti-
mization process, which was performed using stochastic dual
dynamic programming (SDDP) [3], and its impact on the results
was analyzed. Towards this objective, the results obtained by
the methodology that is officially used in the national intercon-
nected system (NIS) were faced with the alternative bootstrap
method proposed in this article. The conclusion demonstrates
that the bootstrap method is an effective methodology for
the determination of the model order and scenario generation
and permits the acquisition of coherent information regarding
the long-term operational planning process for hydrothermal
systems.

The bootstrap technique has not yet achieved broad application
in energy time series. Some studies that have adopted the method
are highlighted below.

The importance of the bootstrap technique was accentuated in
the study of the time series for the prediction of energy demand
in the American market in 1984 [5]. In 1986, Chatterjee [6] esti-
mated the standard error of estimations of the parameters of the
prediction models. In 1991, Neto compared the behaviours of the
bootstrap and the Box and Jenkins classical methodology in the
identification of the structure of the AR(1), AR(2), MA(1), MA(2),
and ARMA(1,1) models [29].

In a time series, the bootstrap method can be applied to
the residuals or as moving blocks [6,7]. To apply the bootstrap
method to the residuals, one must consider that the data have a
time relationship and can form probabilistic models in which the
residuals are independent. The generated residuals are randomly
and independently selected B times with replacement, generat-
ing B bootstrap samples. Next, the series are assembled using the
adjusted model and the randomly selected residuals. In the moving
blocks method, proposed in [32], from an original sample (Z1, Z2, Z3,
. . .,  Zn), k blocks of size “M” are randomly selected, with replace-
ment, to form the bootstrap samples. The process is repeated B
times, generating the new series. This method requires the second-
order stationarity of the original series and the difficulty of defining
the best size of block M.

The bootstrap method was used as an alternative procedure for
determining the order of the autoregressive model applied to the
series of ANEs, see [2].

The operational planning problem of hydrothermal systems
considering different planning time frames was presented in [9].
Carneiro [10] analyzed the resolution techniques for long- and
medium-term planning, describing their primary characteristics,
advantages and disadvantages.

Different algorithms based on the use of network inflow for
resolving the hydrothermal energy planning problem are presented
in [11–16].

Christoforidis et al. [17] proposed a methodology for the oper-
ational planning of systems that involve predominantly hydraulic
forms of generation, making use of the techniques of load predic-
tion and maintenance scheduling through the primal-dual interior
point method.

A model that integrates the operational planning and system
reliability by considering the stochasticity of energy demand and
the affluent inflows from reservoirs was presented by Amjady et al.
[18].

The use of a hybrid representation for the reservoirs of the
hydroelectric plants (equivalent and individualized reservoirs) was
proposed by Marcato [19]; this representation allowed further
studies to be conducted, such as the economic and operational via-
bility of hydroelectric plants, system representations with strong
operational restrictions, and flood control studies, among others.

Labadie [20] presented several techniques that apply stochas-
tic optimization to the operational planning of hydrothermal
systems, such as linear programming, linear stochastic pro-
gramming, non-linear programming, network inflow, discrete
dynamic programming, stochastic dynamic programming, differ-
ential dynamic programming, discrete-time optimal control theory
and stochastic optimal control. Nandalal and Bogardi [21] pre-
sented optimization techniques based on incremental dynamic
programming and stochastic dynamic programming for opti-
mal  reservoir operation; they also presented decomposition and
aggregation/disaggregation methods as well as methods based on
equivalent reservoirs.

A new proposal for modelling future cost functions in
medium-term operational planning for use in stochastic dynamic
programming (SDP) was presented by [22] and [28]. In this pro-
posal, the convex hull algorithm was used to obtain a series of
hyperplanes that constitutes a convex set through the discretiza-
tion of the state space.

Artificial intelligence techniques were applied to resolve the
operational planning problem for hydrothermal systems. For exam-
ple, [23] involved a comparative study of non-linear programming
based on the network inflow of the “HydroMax” programme [24]
against evolutionary computation (genetic algorithm). Monte and
Soares [25] applied an adaptive neural-fuzzy inference system,
and the methodology worked in parallel with a deterministic opti-
mization model that considered inflow rate prediction; in addition,
Antunes [26] applied an artificial intelligence technique based on
the behaviour of ant colonies, where the results indicated similar
behaviour to that obtained by non-linear programming techniques.
Further, Rodrigues et al. [27] proposed the use of neural-dynamic
programming (NDP), that is, the behaviour was  observed through
simulations and, with this, the actions were improved through rein-
forcement using iterative techniques that sought to improve the
capacity to estimate the future cost function.

The remainder of the paper is organized as follows: Section 2
presents the bootstrap methodology and its application to deter-
mine the order of the models and the generation of the scenarios.
Section 3 presents information that is essential for analysing the
work presented in the case study section. Section 4 describes the
results of the proposed method, and Section 5 presents the main
conclusions.

2. Bootstrap method

The bootstrap method was  first proposed in [32], where x = (x1,
x2, . . .,  xn) corresponds to the initial sample with “n” elements of
a population, which has an unknown probabilistic model and that
follows an “F” cumulative distribution function. Therefore, “B” boot-
strap samples of size “n” are formed from the initial sample, which
is represented by Eq. (1), and are obtained by random sampling
with replacement.

x∗1 = (x∗1
1 , x∗1
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x∗2 = (x∗2
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(1)

The non-parametric modelling of the bootstrap technique
allows for important information to be extracted without specific
knowledge of the population from which the sample was  extracted;
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