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a  b  s  t  r  a  c  t

This paper  compares  three  methods  for  solving  probabilistic  optimal  power  flow  (P-OPF)  problem:  Zhao’s
point  estimate  method  (PEM),  Quasi Monte  Carlo  simulation  (QMCS)  and  Latin  hypercube  sampling  (LHS).
With Nataf  transformation,  P-OPF  problem  is  formulated  as  a  multiple  integral  over  standard  normal
space.  By  introducing  a differential  operator,  a mathematical  model  is developed  to  compare  the  per-
formance  of QMCS  and  LHS. Furthermore,  a simplified  Gaussian  mixture  model  (GMM)  is presented  to
model  distributions  of  P-OPF  solutions.  Testing  on  a modified  118-bus  system,  it  is found  LHS  outper-
forms  PEM  and QMCS  with  a small  sample  size,  but  behaves  comparably  with  QMCS  for a large  sample
size.  Compared  to  other  statistic  models,  GMM  shows  a higher  flexibility  for  data  fitting.
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1. Introduction

Probabilistic optimal power flow (P-OPF) and probabilistic
power flow (PPF) are two important tools for power system plan-
ning and operation, especially at a time when the intermittent
renewable generations are increasingly integrated into the grid.
Regardless of the detailed computational process, PPF and P-OPF
may  be regarded as a same problem: characterizing the output of
an implicit function whose inputs are random variables. From this
point of view, the methodologies developed for solving PPF are also
applicable to P-OPF problem.

The major difference between P-OPF and PPF lies in the func-
tion relationship F(·) of inputs and outputs. In PPF calculation, F(·)
is defined by a set of equations; while, in P-OPF problem, these
equations are just a set of constraints for an optimization prob-
lem, which also includes many inequality constraints. That is to
say, the solutions of PPF equations should both satisfy power flow
equations and the inequality constraints in optimal power flow
(OPF). Therefore, the nonlinearity of F(·) is much more severe for
P-OPF than for PPF. Hence, the algorithms for P-OPF computa-
tion should be robust for a highly nonlinear function, and can
achieve satisfactory accuracy with an acceptable computational
burden.

The cumulant method, classified as analytical method, is very
efficient for P-OPF computation [1–3]. This algorithm employs a
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linear function to approximate F(·), and uses it to calculate the
cumulants of outputs. While, because of the linearization of F(·), this
method shows low accuracy for high-order cumulants. Weighted
least square (WLS) method is another analytical method. In Ref. [4],
it is combined with Gaussian mixture model (GMM) [5] to solve PPF
problem. With each inputs being decomposed into weighted sums
of normal variables, PPF problem is solved by executing multiple
WLS  runs for every possible combinations of decomposed normal
components. Although the probability distributions of inputs and
outputs are well represented by GMM,  the calculation times of WLS
increase dramatically with respect to the number of non-normal
inputs.

Another set of methods, known as point estimate method (PEM),
has been introduced to solve P-OPF problem in recent years [6–8]. In
conjunction with normal transformation technique, PEM can han-
dle correlated non-normal input variables. This method chooses
representative points and assigns them with associated weights,
then, performs deterministic optimal power flow (OPF) for these
points, and calculates the statistical moments of outputs. In Refs.
[9,10], two algorithms: Hong’s PEM and Zhao’s PEM are compared
for PPF computation, the result shows that Zhao’s PEM is more
accurate.

The unscented transformation (UT) method may also be classi-
fied as PEM, but this method employs a different way to determine
points and weights, and can handle correlated input variables
directly. In Refs. [11,12], UT method is used to solve PPF problem
and P-OPF problem, and gives comparable results with Hong’s PEM.
Hence, in this paper, Zhao’s PEM is adopted as a candidate algorithm
for P-OPF computation.
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Table  1
Four statistic models for data fitting.

Model Basic distribution RM PWM  Percentile

Johnson Normal Yes [20] No Yes [21]
CF Normal Yes [22] No No
NPNT Normal No Yes [17] No
GLD Uniform Yes [23] Yes [24] Yes [25]

Monte Carlo simulation (MCS) is a well known and adaptive
method for P-OPF computation [13–16]. With numerous samples
generated from probability distributions of inputs, deterministic
OPF calculations are carried out. Then, the statistical moments
of the output variable can be obtained directly. Unlike analytical
method and PEM, MCS  does not employ an approximation func-
tion of F(·) to get outputs. By increasing the number of samples,
the accuracy of MCS  can be further improved. Whereas, MCS  is not
computationally competitive, it requires a large number of samples
to yield reliable results.

To improve the efficiency, algorithms are developed to choose
samples more effectively, such as Quasi Monte Carlo simulation
(QMCS) [17] and Latin hypercube sampling (LHS) [18,19]. By trans-
forming P-OPF problem into independent standard uniform space,
these algorithms generate samples which are more uniformly dis-
tributed. Compared to MCS, QMCS and LHS can yield more accurate
results with less samples.

Another issue of P-OPF is to find a flexible model to represent the
probability distributions of outputs. This problem is referred to as
data fitting, and several models can serve for this purpose, such as
Johnson system, Cornish–Fisher (CF) expansion, Ninth-order poly-
nomial normal transformation (NPNT), and generalized lambda
distribution (GLD). All these models are developed by making an
elementary transformation of certain basic distribution, such as
standard normal distribution and standard uniform distribution.
Then, with suitable parameters, various probability distributions
can be approximated.

When estimating the parameters of these models, moment
matching and percentile matching are two generally used meth-
ods. By matching the moments or percentiles of target distribution
with those of the model, equations solved for parameters are
established. The candidate statistical moments include: standard-
ized central moment, raw moment (RM), cumulant, L-moment
and probability weighted moment (PWM). While, the standard-
ized central moment and cumulant can be obtained through an
elementary transformation of RM;  mathematically, they are actu-
ally the same. Similarly, L-moment can also be substituted by PWM.
Thus, the moment matching method actually involves two  types of
moments: RM and PWM.

Table 1 shows algorithms for estimating parameters of these
models. For some models, RM,  PWM  or percentile matching would
yield equations too complicated to be solved, and it is denoted as
“No” in Table 1.

Although these four models are capable of simulating various
unimodal distributions, they fail to handle bimodal or multi-
modal distributions, which some P-OPF solutions may  follow. To
accommodate such cases, Gaussian mixture model (GMM)  can be
employed, but the parameter estimation of GMM  involves compli-
cated mathematical calculations [5].

The paper aims to compare three algorithms for solving P-OPF
problem: Zhao’s PEM, QMCS and LHS. To accommodate correlated
non-normal input variables, Nataf transformation is employed,
whereby P-OPF is formulated as an integral with respect to inde-
pendent standard normal variables. With the introduction of a
differential operator, the issue of calculating the multiple integral
is converted to a multivariate function approximation problem,
where QMCS and LHS are compared. To reconstruct the probability

distributions of P-OPF solutions, a simplified GMM  is put forward,
and a percentile matching method is presented to determine its
parameters.

The paper is outlined as follows: Section 2 introduces Nataf
transformation and P-OPF problem. Section 3 describes three meth-
ods for solving P-OPF problem, a theoretical comparison between
QMCS and LHS is also given. In Section 4, a simplified GMM  model
is developed. In Section 5, a case study is performed on a modi-
fied IEEE-118 bus system including wind farms. Section 6 provides
some conclusions.

2. Problem formulation

2.1. Nataf transformation

Suppose x is a random variable with cumulative distribution
function (CDF) F(x), z is a standard normal variable with CDF ˚(z).
The transformation from z to x is denoted as [26,27]:

F(x) = ˚(z) ↔ x = F−1[˚(z)] (1)

where F−1(·) is the inverse CDF of x.
Suppose xi, xj are two  correlated random variables, which are

generated from standard normal variables zi and zj respectively:

xi = F−1
i

[˚(zi)]

xj = F−1
j

[˚(zj)].
(2)

Let �x denote the correlation coefficient between xi and xj, let �z

denote the one between zi and zj. To ensure a desired value of �x, a
suitable value of �z should be determined. This issue can be handled
by algorithms in Refs. [26,27].

Suppose X = (x1, . . .,  xi, . . .,  xm)T is an m-dimensional random
vector with correlation matrix RX . According to Eq. (1), X can be
generated by the standard normal vector Z = (z1, . . .,  zi, . . .,  zm)T

with an appropriate correlation matrix RZ .
For each entry �x(i, j) (i /= j) in RX , calculate the associated �z(i,

j), and obtain RZ in the standard normal space. Then, Z can be
obtained by the following linear transformation:

Z = LU (3)

where U = (u1, . . .,  ui, . . .,  um)T is an independent standard normal
vector. L represents the lower triangular matrix from Cholesky
decomposition of RZ :

RZ = LLT . (4)

In short, Nataf transformation can be expressed as:
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