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a  b  s  t  r  a  c  t

Accurate  estimation  of wind  speed  probability  distributions  is  a  challenging  task  in  wind  power  planning
and  operation.  Different  from  the  commonly  used  parametric  methods  which  consist  of  selecting  a  suit-
able parametric  model  and estimating  the  parameters,  this  paper  presents  an  improved  non-parametric
method  to estimate  wind  speed  probability  distributions.  Based  on the  diffusion  partial  differential  equa-
tion  in finite  domain,  this  method  accounts  for both  bandwidth  selection  and  boundary  correction  of
kernel  density  estimation.  Preprocessing  techniques  are  designed  to handle  data  with  different  recording
manners  to  produce  smooth  probability  density  functions.  Probability  densities  of specific  grid  points  are
obtained  by  inverse  discrete  cosine  transformation  and  are further  used  to calculate  assessment  indices
of wind  resources.  The method  has  been  tested  to estimate  probability  densities  of  parametric  distribu-
tions  and  actual  wind  speed  data  measured  in different  places.  Simulation  results  show  that  the  proposed
approach  is of practical  value  in fitting wind  speed  distribution  models.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

As more and more wind power has been utilized around the
world, it is of great value to estimate probability distributions of
wind speed to maximize the efficiency of wind power genera-
tions. In power system planning and reliability analysis, most of
the researches on wind speed probability distributions are based
on parametric distribution models [1–6]. And the methods esti-
mating wind speed probability distributions are usually parametric
methods which consist of selecting a suitable parametric distribu-
tion and estimating the parameters [7–13]. The commonly used
parametric distribution models can be divided into two  categories:

(1) Unimodal parametric distributions including the Weibull dis-
tribution, the Gamma  distribution, the Rayleigh distribution
and so on.

(2) Multimodal parametric distributions, especially bimodal mod-
els, for example, the mixture Weibull distribution of two
components, the mixture distribution of truncated Normal and
Weibull.
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The parametric methods are widely used for the efficiency in
estimation and can be applied to estimate wind characteristics at
the sites for which no wind data is available [14,15]. However,
there are also challenges for the parametric methods. First, there is
no rule in selecting the theoretical distribution and a distribution
model which can represent wind regimes at some wind farms may
not work well for others. Second, an estimated parametric model
may  not always be satisfactory results because of the extreme
randomness of wind speed in both time and space. Thus, the
non-parametric methods are introduced to estimate wind speed
probability distributions [16,17]. Kernel density estimation (KDE)
is one of the most popular non-parametric distribution estimating
methods [18–20]. Up to now, most of the papers concentrate on
the mathematical theories of KDE and only a few of them actually
model the probability distributions of wind speed. A practical ker-
nel density method is proposed in [16] to estimate long-time wind
speed probability distributions. A smooth multivariate wind distri-
bution model is developed in [17] to capture the coupled variation
of wind speed, wind direction, and air density.

In this paper an improved diffusion-based kernel density
method (DKDM) is presented to estimate wind speed probability
distributions. DKDM accounts for both bandwidth selection and
boundary correction of KDE and discrete cosine transformation is
adopted in DKDM to reduce the computational complexity. In order
to produce smooth probability densities, a uniformly distributed
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random number is added to the original wind speed data and its
value range depends on the corresponding recording frequency
and resolution. The probability densities of specific grid points are
obtained by inverse discrete cosine transformation and are fur-
ther used to calculate assessment indices of wind resources. The
proposed method is compared with other approaches in estimat-
ing probability densities of parametric distribution functions and
actual wind speed data. The simulation results demonstrate the
practicality of this method.

2. Diffusion-based kernel density method

2.1. Introduction of kernel density estimation

Suppose we have observed data X1, X2, . . .,  XN from a common
distribution with the probability density function f(x), and use the
kernel density method to estimate the density as follows [18]:

f̂ (x) = 1
Nh

N∑
i=1

K
(

x − Xi

h

)
(1)

where K(·) is the kernel function, h is the bandwidth and N is the
size of data.

There are many kernel functions and the Gaussian kernel is
selected as the kernel function in this paper:

K(u) = 1√
2�

exp
(

−1
2

u2
)

(2)

It turns out that the choice of bandwidth is much more impor-
tant than the choice of kernel functions for the behavior of
estimating results. Small values of bandwidth make the estimation
look “wiggly” and show spurious features, whereas big values of
bandwidth will make the result over-smooth in a sense that it may
not reveal the structural features, such as multimodality [19]. In
addition, the original KDE assumes the domain of the density to be
infinite. Thus, KDE suffers from boundary problems if the domain
has finite endpoints [21,22].

There are two classes of methods to estimate the bandwidth of
KDE: the cross-validation methods which try to look at ISE(h), and
the plug-in methods which try to minimize MISE(h) [23].

ISE(h) =
∫

(f̂h(x) − f (x))
2
dx (3)

MISE(h) = E[

∫
{f̂h(x) − f (x)}2

dx]  (4)

where f̂h(x) represents the probability density estimated by KDE,
f(x) represents the true density distribution function and E(·) is the
expectation of variables.

(1) Cross-validation methods

ISE(h) =
∫

{f̂h(x) − f (x)}2
dx =

∫
f̂ 2
h (x)dx − 2E{f̂h(x)}

+
∫

f 2(x)dx (5)

The third term can be ignored since it does not depend on the
bandwidth and (5) can be simplified as:

F(h) =
∫

f̂ 2
h (x)dx − 2E{f̂h(x)} (6)

Various modifications of cross-validation methods have been
proposed to accurately estimate the second term in (6).

(2) Plug-in methods

MISE(h) =
∫

E{f̂h(x) − f (x)}2
dx = R(K)

Nh
+ h4

4
(u2(K))2R(f ′′)

+ o(h4) + o
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1
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)
(7)

where

u2(K) =
∫

u2K(u)du, R(K) =
∫

K2(u)du,

R(f ′′) =
∫

f ′′2(u)du (8)

Define the Asymptotic Mean Integrated Squared Error
(AMISE) as:

AMISE(h) = R(K)
Nh

+ h4

4
(u2(K))2R(f ′′) (9)

So the asymptotically optimal bandwidth is:

hopt =
(

R(K)

u2
2(K)R(f ′′)

)1/5

n−1/5 (10)

In (10) only R(f′′) is unknown and has to be estimated. Thus,
plug-in methods mainly concern the techniques to estimate
R(f′′).

Among the two classes of methods, the most popular approach
is Silverman’s rule of thumb (ROT) [18] in which the density is
regarded as the normal distribution, but it usually makes the results
over-smooth in multimodal models. Further, it has been reported
in [24] that one-sided cross-validation method (OSCV) [25] and
Sheather–Jones plug-in method (SJPI) [26] are outstanding meth-
ods among various bandwidth selection methods. In this paper, the
densities estimated by ROT, OSCV and SJPI are evaluated and com-
pared with the results obtained by the proposed method. ROT  and
SJPI are introduced in [18] and [26], respectively. The calculation
procedure for OSCV using Gaussian kernel is deduced in Appendix
A.

2.2. Kernel density estimation via diffusion

The Gaussian kernel density estimator of (1) can be written in
an alternative form:

f̂ (x; t) = 1
N

N∑
i=1

�(x, Xi; t) (11)

where

�(x, Xi; t) = 1√
2�t

exp

[
−x − Xi

2t

2
]

(12)

where
√

t has the same definition as h in (1), referred to as the
bandwidth.

It is shown in [27], the Gaussian kernel density estimator is
the unique solution to the following diffusion partial differential
equation (PDE):

∂
∂t

f̂ (x; t) = 1
2

∂2

∂x2
f̂ (x; t), x ∈ X, t > 0, X ≡ R (13)

with the initial condition of

f̂ (x; 0) = 1
N

N∑
i=1

ı(x − Xi) (14)
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