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a  b  s  t  r  a  c  t

This  paper  proposes  Extended  Kalman  Filter  (EKF)  based  dynamic  state  estimator  for  power  systems  using
phasor  measurement  unit  (PMU)  data. Dynamic  state  estimation  in  power  systems  provides  synchronized
wide  area  system  history  of the  dynamic  events  which  is  key  in the analysis  and  understanding  of  the
system  performance,  behavior,  and  the  types  of  control  decisions  to  be  made  for  large scale  power  system
contingencies.  In this  paper,  2-axis-fourth-order  state  space  modeling  and  validation  of  the  synchronous
machine  is  explained  in detail.  The  model  is then  used  for  dynamic  state  estimation  using EKF  in  IEEE
3-Generator-9-Bus  Test  System.  The  simulation  results  show  that  the  model  and  estimation  approach  are
capable to provide  accurate  information  about  the states  of  the  machine  and  eliminate  the  noise  effects
on  the measurement  signal.  The  main  challenges  of dynamic  estimation  in  large  power  systems  are  also
addressed  in  this  paper.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Extended Kalman Filter (EKF) has been among the most referred
estimation approaches for dynamic state estimation in power
systems [1,2]. The advent of Phasor Measurement Units (PMUs)
[3] has facilitated online state estimation in large scale power
systems which was previously impossible using low rate and
non-synchronous data provided by Supervisory Control and Data
Acquisition (SCADA) systems. As the number of installed PMUs
are gradually increasing worldwide, real time estimation in large
interconnected power grids is becoming more realistic [2]. PMU
is a recently developed power system measurement device that
samples input three phase voltage and current waveforms, using a
common synchronizing signal received by Global Positioning Sys-
tem (GPS), and calculates the phasors (magnitudes and angles) of
the bus by deploying Discrete Fourier Transform [3]. Different esti-
mation approaches and case studies have been used to investigate
dynamic state estimation in power systems. Feasibility studies of
applying Extended Kalman Filter (EKF) to IEEE 3-Generator-9-Bus
Test System using classical model of the synchronous generator
are investigated in [1]. EKF with unknown input is the estimation
approach for Single-Machine-Infinite-Bus (SMIB) in [2]. Another
form of nonlinear Kalman Filter, Unscented Kalman Filter (UKF),
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is used to design an observer for different power system case
studies using the PMU  installed on the main bus of the genera-
tor [4–6]. In [7], a divide-by-difference-filter based algorithm is
proposed for dynamic estimation of the generator rotor angle in
a large power system. The results of state estimation in a SMIB
using extended particle filter are also presented in [8]. Simula-
tions are performed on 2-axis-fourth-order state space model of
the synchronous machine in [2,6] using either EKF or UKF to design
dynamic state estimator for various power systems.

The paper is organized as follows. In Section 2, mathemati-
cal description of the synchronous generator is explained and the
2-axis-fourth-order state space model of the machine is derived.
EKF principles and equations are presented in Section 3. Section 4
presents simulation results for IEEE 3-Generator-9-Bus Test Sys-
tem. Section 5 presents an application and the major challenges of
dynamic state estimation in power systems. Section 6 concludes
the paper.

2. Single-machine-infinite-bus state space model

Fig. 1 shows a simplified equivalent model of a general power
system which is a single generator connected through a trans-
former and parallel transmission lines to infinite bus. The classical
dynamic model of the synchronous machine is as follows [9]:

dı

dt
= ω0�ω  (1)
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Fig. 1. Single-Machine-Infinite-Bus (SMIB) diagram [2].

d�ω

dt
= 1

2H
(Pm − Pe − D�ω) (2)

In this model, D and H are damping factor and inertia constant,
�ω is the per unit rotor speed deviation, ı is the rotor angle, and
Pm and Pe are the power provided by the prime mover and the
electrical output power of the generator both in per unit. The next
step is to develop the 2-axis-fourth-order model of the synchronous
generator which includes e′

q and e′
d
, the q and d axis components

of the generator internal voltage. Based on the phasor diagram of
the synchronous machine, equations describing the q and d axis
components of the generator internal voltage and their first order
differential equations are given in Eqs. (3)–(6) [9].

e′
q = eq + Raiq + x′

did (3)

e′
d = ed + Raid + x′

qiq (4)

de′
q

dt
= 1

T ′
do

(Efd − e′
q − (xd − x′

d)id) (5)

de′
d

dt
= 1

T ′
qo

(−e′
d + (xq − x′

q)iq) (6)

xd and xq are direct and quadratic axis reactances, and x′
d

and x′
q are

direct and quadratic axis transient reactances, all in per unit. Also,
T ′

do and T ′
qo are direct and quadratic axis transient open circuit

time constants in second. ı is defined as the angle such that e′
q,

the q axis component of the voltage behind the transient reactance
x′

d
, leads the terminal bus Et or Vt, and Efd is the field voltage of

the machine. Considering the phasor diagram of the synchronous
machine, the d-axis and q-axis voltages (ed, eq) can be expressed as
[2,10]{

ed = Vt sin(ı)

eq = Vt cos(ı)
→ Et = Vt =

√
e2

d
+ e2

q (7)

In addition, the d-axis and q-axis currents (id, iq) are [2,10]{
id = It sin(ı + �)

iq = It cos(ı + �)
→ It =

√
i2
d

+ i2q (8)

Using Eqs. (3), (4) and (7) and by neglecting the stator resistance
(Ra = 0), id and iq can be written as

id = e′
q − Vt cos(ı)

x′
d

(9)

iq = Vt sin(ı) − e′
d

x′
q

(10)

The air gap torque Te of the generator in per unit is equal to the
terminal power Pe or Pt (generator terminal electrical power) [2].
Therefore, it is obtained

Te = Pt + RaI2
t

Ra=0−→Te ∼= Pt = edid + eqiq (11)

Eqs. (7), (9) and (10) are inserted into Eq. (11) to obtain

Te ∼= Pt = Vt

x′
d

e′
q sin(ı) − Vt

x′
q

e′
d cos(ı) + V2

t

2

(
1
x′

q
− 1

x′
d

)
sin(2ı) (12)

Using Eqs. (1), (2), (5), (6), (9) and (10), the fourth order model
of a synchronous generator is derived as follows:
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dt
= ω0�ω
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Eqs. (12) and (13) are used in a recursive EKF estimation program
after being discretized with the first term of the Taylor Series.

3. Extended Kalman Filter algorithm

EKF is a powerful recursive algorithm for dynamic state esti-
mation in nonlinear systems. This optimal estimation approach
minimizes the covariance of squared error between real states and
estimated ones. A nonlinear discrete stochastic difference equa-
tion and measurement equation can be generally presented in the
following form [11]:

xk+1 = fk(xk, uk, wk)

yk+1 = hk+1(xk+1, vk+1)

wk∼(0,  Qk)

vk∼(0,  Rk)

(14)

f is the nonlinear function of the states and inputs, xk+1 represents
state vector, uk is the control input vector, yk+1 is the output vector,
wk and vk are the process and measurement noise, Qk and Rk are
the process and measurement noise covariance, and k is the time
step for each iteration. EKF recursive algorithm is performed in two
stages: time update and measurement update. As a result, the fol-
lowing steps can be applied to nonlinear system for dynamic state
estimation [11,12].

1. The filter is initialized as follows:

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

(15)

For k = 1, 2, 3, . . .,  n the following stages are performed.
2. Partial derivative matrices of the system equation are obtained

by Eq. (16).

Fk = ∂fk
∂X

∣∣∣∣
x̂+

k

Lk = ∂fk
∂w

∣∣∣∣
x̂+

k

(16)

• Time update equations of EKF are as follows:

P−
k+1 = FkP+

k
FT

k
+ LkQkLT

k

x̂−
k+1 = fk(x̂+

k
, uk, 0)

(17)

• Partial derivative matrices of output equation are derived by
Eq. (18).
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