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a  b  s  t  r  a  c  t

This  paper  presents  the  parallelization  of  the  multi-frequency  hybrid  backward/forward  sweeping (BFS)
technique  on  a graphics  processor  unit  (GPU).  Primarily,  the  intrinsic  layer  structure  of  a radial  network,
typical  topology  of distribution  systems,  and  its multi-frequency  behavior  are  exploited  for  parallelization
of  the hybrid  BFS  method  on the  GPU.  The  less  computational  demanding  tasks,  e.g., error  computa-
tion  and simple  vectorized  operations,  are  assigned  to the CPU.  The  network  solution  is  performed  in
the  Matlab® environment  using  compute  unified  device  architecture  (CUDA).  The  computational  time
required  by  the GPU/CPU  BFS  implementation  is  compared  with  a  CPU-only  program  by  solving  four
networks  of  different  sizes.  Validation  of the  multi-frequency  BFS  results  is made  through  a CPU  imple-
mentation  of a Newton-type  solution  scheme.  The  significant  reduction  in  the  computational  time  of
the parallelized  GPU  implementation  of the  hybrid  BFS  method  combined  with  its  ability  to  include  a
wide  range  of  frequencies  and to  handle  nonlinear  components  makes  it suitable  for  real-time  online
applications.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The high penetration of distributed energy resources (DERs) in
distribution systems is driven by the strong environmental, eco-
nomical, technical and social benefits that they provide. However,
the integration of DER units brings new challenges to the operation,
control, and protection of the distribution system [1]. Advanced
power system analysis software tools in conjunction with high-
performance computing platforms play a vital role in enabling
the exploitation of the benefits of DER technologies while avoid-
ing/minimizing their drawbacks.

Recently, parallel computing has demonstrated to be an appro-
priate tool for handling solution methods applicable to large-scale
power systems [2]. A major goal of parallel computing is to speed up
the solution of large networks. For example, the significant reduc-
tion in computational time is advantageous for online smart energy
management systems as, for instance, it enables the real-time secu-
rity assessment of the system based on evaluating the effects of
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hundreds of contingencies on the current operating conditions
obtained from real-time telemetered data.

Moreover, the increasing number of frequency-producing elec-
trical devices in distribution networks, e.g., arc furnaces, static
converters, nonlinear reactors, and adjustable speed drives, has
recently required large computational resources for the network
analysis, especially when accounting for a wide range of frequen-
cies [3–11]. Consequently, methods for computing the steady state
of a network have evolved from considering fundamental power
frequency [12–16], to processing a large number of frequencies
[17–22].

Typically, a distribution network has a radial (“tree”) topology
[13,15,16]. Some distribution networks can additionally have few
“transverse” lines; this type of networks has been called “weakly
meshed” distribution networks [12,14]. Topologically, distribution
networks can be schematically divided into in layers which rep-
resent the depth of the system’s feeding loads; computationally,
distribution networks are divided into layers for numbering pur-
poses [13]. In this tenor, we  propose a GPU implementation of
the multi-frequency hybrid BFS technique (hereafter referred to
as BFS only) which is mainly applicable to radial and/or weakly
meshed networks [12]. The BFS method is able to: (i) include har-
monics and interharmonics [17,18], since it is formulated in a
modified harmonic domain (MHD) [22], (ii) avoid computation and
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inversion of Jacobian matrices and (iii) handle nonlinear compo-
nents in a hybrid time/frequency domain solution scheme [17,18].

The calculation of electromagnetic transients in power systems,
via the trapezoidal rule and based on an admittance matrix rep-
resentation, is presented in [23]. In [24], the electrical network
is expressed in single-instruction-multiple-data (SIMD) format,
which is amenable for GPU implementation, in a transient stability
simulation program. In [25], the power flow solution algorithms of
Gauss–Seidel, PQ-decoupled and Newton–Raphson (NR) are imple-
mented as sequential solvers on CPU and parallel solvers on GPU;
they are numerically compared in terms of computational times. It
is concluded in [25] that the NR parallel implementation on GPU
speeds up more than 50 times its CPU sequential solver counterpart.
It is worth noting that the NR implementation in [25] corresponds
to fundamental frequency only. A similar study is presented in [26]
for the NR and the Gauss–Jacobi techniques. In [15], a fast decoup-
led methodology is presented and numerically compared with the
NR method, implicit Zbus, and BFS power flow solution algorithms
in terms of total number of floating point operations; however, the
proposed techniques is limited to radial systems with one voltage-
regulated bus adopted as the source. The methodologies in [15] are
implemented as sequential solvers on CPU.

A recent implementation of the BFS method on the GPU is
described in [27]. Theoretical speed-up relations are given for
the parallelization processes of nodal current injections and back-
ward/forward sweep. The implementation in [27] is, however,
limited to linear networks and fundamental frequency.

In this paper, two network characteristics are exploited in the
parallelization of the BFS on the GPU, i.e. (a) the decoupling of
currents when sweeping layers, intrinsic to a radial network, in
backward fashion and (b) the linearity of the network when sweep-
ing layers in forward fashion for calculating node voltages [12].
Within the BFS method, a frequency-by-frequency network solu-
tion scheme is also exploited, parallelized, and implemented on the
GPU.

Regarding the BFS implementation described in this paper, four
case studies consisting of networks of different sizes are evaluated
via the proposed GPU/CPU implementation of the BFS technique. All
case studies are compared in terms of computational times with a
CPU-only implementation of the BFS and validated with a CPU-only
implementation of the Newton–Raphson (NR) technique.

2. Characteristics of solution techniques

Techniques for computation of the periodic steady-state of a
network utilize iterative solution methods [17–20,22,23,25–28].
The most commonly employed solution methods are Newton-type
methods and fixed-point algorithms, e.g., Gauss–Seidel. Gener-
ally speaking, Newton-type methods require fewer iterations as
compared to fixed-point algorithms; however, appropriate initial
values have to be carefully selected in the former whereas ran-
dom initial values can be assigned to the latter. However, despite
the fewer number of iterations required by Newton-type methods,
fixed-point algorithms are computationally more efficient since
they do not rely on computation and inversion of large matrices,
e.g. Jacobian, especially when involving a large number of fre-
quencies. These natural characteristics of Newton-type solution
schemes seem to be unattractive for parallelization.

The BFS technique belongs to the fixed-point algorithms cate-
gory. Its application to a radial network solution involves sweeping
back and forth each of the paths (limited by the farthest ele-
ments and the feeder) of the radial network structure. Since the
network sweeping involves simple algebraic relations between
nodal voltages and branch currents, large matrix operations are
avoided. Furthermore, due to the separate handling of linear and

nonlinear network components, the BFS method can readily be
structured in a frequency-by-frequency solution scheme. The
aforementioned characteristics of the BFS method allow its
straightforward implementation on the GPU, as presented in the
next sections of the paper.

Compared to existent research, our implementation of the BFS
method on the GPU considers a wide range of frequencies (har-
monics/interharmonics) and nonlinear loads. The linear network is
formulated in the MHD  to account for any number of frequencies,
as described in Section 3. The nonlinear components are resolved
in the time domain and interfaced to the MHD  via discrete Fourier
transform (DFT) operations.

3. Basics of the modified harmonic domain

The BFS technique has recently been extended to include inter-
harmonic frequencies [17,18]. The extension, i.e., the MHD, is based
on the DFT and its inverse transform (IDFT), expressed as [29]:
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where N is the number of samples and � is a data window for dimin-
ishing the Gibbs phenomenon due to truncation. The discretization
variables used in (1) are: ω = k�ω and t = n�t  where �ω = 2�/T (T
corresponds to the observation period of time).

The MHD  permits the conversion of ordinary differential
equations (ODEs) to a set of algebraic equations arranged in a
vector/matrix form [22], similar to the harmonic domain (HD) tech-
nique [20]. For instance, and without loss of generality, consider the
scalar ODE given in (2) where we assume that coefficients a and b
are constant.

ẋ(t) = ax(t) + bu(t). (2)

Each variable in (2) is expressed via its DFT representation, as in
(1a), yielding
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Note that the left-hand side in (3a) corresponds to the deriva-
tive of variable x with respect to n�t. Arrangement of the DFT
coefficients in (3a) using a vector/matrix structure, and dropping
out the exponential terms, results in

DX = aX + bU, (3b)

where the structure of X (and U) is:

X =
[

X0 X1 · · · XN−1
]Tr

, (4)

where Tr denotes transpose. The derivative terms in (3b) result in
the diagonal matrix of differentiation D [20], given by

D = diag{ 0, j�ω, j2�ω,  · · ·,  j(N − 1)�ω }. (5)

It is mentioned that the data window, �, is used in this paper
only when transforming an MHD  variable into its time-domain
counterpart. Further details of the MHD  can be found in [22].
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