
Electric Power Systems Research 121 (2015) 295–301

Contents lists available at ScienceDirect

Electric Power Systems Research

j o ur na l ho mepage: www.elsev ier .com/ locate /epsr

Multi-frequency sweeping method for periodic steady-state
computations on the graphics processor unit

Eric Morales-Aguilara,∗, Abner Ramireza, Mahmoud Matarb

a Center for Research and Advanced Studies of Mexico (CINVESTAV), 1145 Av. del Bosque, Col. El Bajio, Zapopan, Jalisco 45019, Mexico
b Electrical Power and Machines Dept., Ain Shams University, Cairo, Egypt

a r t i c l e i n f o

Article history:
Received 29 August 2014
Received in revised form 4 November 2014
Accepted 7 November 2014
Available online 4 December 2014

Keywords:
Frequency domain analysis
Graphics processor unit
Large-scale systems
Parallel programming
Distribution network
Interharmonics

a b s t r a c t

This paper presents the parallelization of the multi-frequency hybrid backward/forward sweeping (BFS)
technique on a graphics processor unit (GPU). Primarily, the intrinsic layer structure of a radial network,
typical topology of distribution systems, and its multi-frequency behavior are exploited for parallelization
of the hybrid BFS method on the GPU. The less computational demanding tasks, e.g., error computa-
tion and simple vectorized operations, are assigned to the CPU. The network solution is performed in
the Matlab® environment using compute unified device architecture (CUDA). The computational time
required by the GPU/CPU BFS implementation is compared with a CPU-only program by solving four
networks of different sizes. Validation of the multi-frequency BFS results is made through a CPU imple-
mentation of a Newton-type solution scheme. The significant reduction in the computational time of
the parallelized GPU implementation of the hybrid BFS method combined with its ability to include a
wide range of frequencies and to handle nonlinear components makes it suitable for real-time online
applications.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The high penetration of distributed energy resources (DERs) in
distribution systems is driven by the strong environmental, eco-
nomical, technical and social benefits that they provide. However,
the integration of DER units brings new challenges to the operation,
control, and protection of the distribution system [1]. Advanced
power system analysis software tools in conjunction with high-
performance computing platforms play a vital role in enabling
the exploitation of the benefits of DER technologies while avoid-
ing/minimizing their drawbacks.

Recently, parallel computing has demonstrated to be an appro-
priate tool for handling solution methods applicable to large-scale
power systems [2]. A major goal of parallel computing is to speed up
the solution of large networks. For example, the significant reduc-
tion in computational time is advantageous for online smart energy
management systems as, for instance, it enables the real-time secu-
rity assessment of the system based on evaluating the effects of

∗ Corresponding author. Tel.: +52 33 3777 3600x1021.
E-mail addresses: morales@gdl.cinvestav.mx (E. Morales-Aguilar),

abner.ramirez@cts-design.com (A. Ramirez), mahmatar@ieee.org (M. Matar).

hundreds of contingencies on the current operating conditions
obtained from real-time telemetered data.

Moreover, the increasing number of frequency-producing elec-
trical devices in distribution networks, e.g., arc furnaces, static
converters, nonlinear reactors, and adjustable speed drives, has
recently required large computational resources for the network
analysis, especially when accounting for a wide range of frequen-
cies [3–11]. Consequently, methods for computing the steady state
of a network have evolved from considering fundamental power
frequency [12–16], to processing a large number of frequencies
[17–22].

Typically, a distribution network has a radial (“tree”) topology
[13,15,16]. Some distribution networks can additionally have few
“transverse” lines; this type of networks has been called “weakly
meshed” distribution networks [12,14]. Topologically, distribution
networks can be schematically divided into in layers which rep-
resent the depth of the system’s feeding loads; computationally,
distribution networks are divided into layers for numbering pur-
poses [13]. In this tenor, we propose a GPU implementation of
the multi-frequency hybrid BFS technique (hereafter referred to
as BFS only) which is mainly applicable to radial and/or weakly
meshed networks [12]. The BFS method is able to: (i) include har-
monics and interharmonics [17,18], since it is formulated in a
modified harmonic domain (MHD) [22], (ii) avoid computation and

http://dx.doi.org/10.1016/j.epsr.2014.11.009
0378-7796/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.epsr.2014.11.009
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2014.11.009&domain=pdf
mailto:morales@gdl.cinvestav.mx
mailto:abner.ramirez@cts-design.com
mailto:mahmatar@ieee.org
dx.doi.org/10.1016/j.epsr.2014.11.009

296 E. Morales-Aguilar et al. / Electric Power Systems Research 121 (2015) 295–301

inversion of Jacobian matrices and (iii) handle nonlinear compo-
nents in a hybrid time/frequency domain solution scheme [17,18].

The calculation of electromagnetic transients in power systems,
via the trapezoidal rule and based on an admittance matrix rep-
resentation, is presented in [23]. In [24], the electrical network
is expressed in single-instruction-multiple-data (SIMD) format,
which is amenable for GPU implementation, in a transient stability
simulation program. In [25], the power flow solution algorithms of
Gauss–Seidel, PQ-decoupled and Newton–Raphson (NR) are imple-
mented as sequential solvers on CPU and parallel solvers on GPU;
they are numerically compared in terms of computational times. It
is concluded in [25] that the NR parallel implementation on GPU
speeds up more than 50 times its CPU sequential solver counterpart.
It is worth noting that the NR implementation in [25] corresponds
to fundamental frequency only. A similar study is presented in [26]
for the NR and the Gauss–Jacobi techniques. In [15], a fast decoup-
led methodology is presented and numerically compared with the
NR method, implicit Zbus, and BFS power flow solution algorithms
in terms of total number of floating point operations; however, the
proposed techniques is limited to radial systems with one voltage-
regulated bus adopted as the source. The methodologies in [15] are
implemented as sequential solvers on CPU.

A recent implementation of the BFS method on the GPU is
described in [27]. Theoretical speed-up relations are given for
the parallelization processes of nodal current injections and back-
ward/forward sweep. The implementation in [27] is, however,
limited to linear networks and fundamental frequency.

In this paper, two network characteristics are exploited in the
parallelization of the BFS on the GPU, i.e. (a) the decoupling of
currents when sweeping layers, intrinsic to a radial network, in
backward fashion and (b) the linearity of the network when sweep-
ing layers in forward fashion for calculating node voltages [12].
Within the BFS method, a frequency-by-frequency network solu-
tion scheme is also exploited, parallelized, and implemented on the
GPU.

Regarding the BFS implementation described in this paper, four
case studies consisting of networks of different sizes are evaluated
via the proposed GPU/CPU implementation of the BFS technique. All
case studies are compared in terms of computational times with a
CPU-only implementation of the BFS and validated with a CPU-only
implementation of the Newton–Raphson (NR) technique.

2. Characteristics of solution techniques

Techniques for computation of the periodic steady-state of a
network utilize iterative solution methods [17–20,22,23,25–28].
The most commonly employed solution methods are Newton-type
methods and fixed-point algorithms, e.g., Gauss–Seidel. Gener-
ally speaking, Newton-type methods require fewer iterations as
compared to fixed-point algorithms; however, appropriate initial
values have to be carefully selected in the former whereas ran-
dom initial values can be assigned to the latter. However, despite
the fewer number of iterations required by Newton-type methods,
fixed-point algorithms are computationally more efficient since
they do not rely on computation and inversion of large matrices,
e.g. Jacobian, especially when involving a large number of fre-
quencies. These natural characteristics of Newton-type solution
schemes seem to be unattractive for parallelization.

The BFS technique belongs to the fixed-point algorithms cate-
gory. Its application to a radial network solution involves sweeping
back and forth each of the paths (limited by the farthest ele-
ments and the feeder) of the radial network structure. Since the
network sweeping involves simple algebraic relations between
nodal voltages and branch currents, large matrix operations are
avoided. Furthermore, due to the separate handling of linear and

nonlinear network components, the BFS method can readily be
structured in a frequency-by-frequency solution scheme. The
aforementioned characteristics of the BFS method allow its
straightforward implementation on the GPU, as presented in the
next sections of the paper.

Compared to existent research, our implementation of the BFS
method on the GPU considers a wide range of frequencies (har-
monics/interharmonics) and nonlinear loads. The linear network is
formulated in the MHD to account for any number of frequencies,
as described in Section 3. The nonlinear components are resolved
in the time domain and interfaced to the MHD via discrete Fourier
transform (DFT) operations.

3. Basics of the modified harmonic domain

The BFS technique has recently been extended to include inter-
harmonic frequencies [17,18]. The extension, i.e., the MHD, is based
on the DFT and its inverse transform (IDFT), expressed as [29]:

xn = 1
�t

[
1
N

N−1∑
k=0

Xk�kejk�ωn�t

]
, n = 0, 1, . . ., N − 1, (1a)

Xk = �t

[
N−1∑
n=0

xne−jk�ωn�t

]
, k = 0, 1, . . ., N − 1, (1b)

where N is the number of samples and � is a data window for dimin-
ishing the Gibbs phenomenon due to truncation. The discretization
variables used in (1) are: ω = k�ω and t = n�t where �ω = 2�/T (T
corresponds to the observation period of time).

The MHD permits the conversion of ordinary differential
equations (ODEs) to a set of algebraic equations arranged in a
vector/matrix form [22], similar to the harmonic domain (HD) tech-
nique [20]. For instance, and without loss of generality, consider the
scalar ODE given in (2) where we assume that coefficients a and b
are constant.

ẋ(t) = ax(t) + bu(t). (2)

Each variable in (2) is expressed via its DFT representation, as in
(1a), yielding

1
�t

[
1
N

N−1∑
k=0

jk�ωXkejk�ωn�t

]
= a

1
�t

[
1
N

N−1∑
k=0

Xkejk�ωn�t

]

+ b
1

�t

[
1
N

N−1∑
k=0

Vkejk�ωn�t

]
. (3a)

Note that the left-hand side in (3a) corresponds to the deriva-
tive of variable x with respect to n�t. Arrangement of the DFT
coefficients in (3a) using a vector/matrix structure, and dropping
out the exponential terms, results in

DX = aX + bU, (3b)

where the structure of X (and U) is:

X =
[

X0 X1 · · · XN−1
]Tr

, (4)

where Tr denotes transpose. The derivative terms in (3b) result in
the diagonal matrix of differentiation D [20], given by

D = diag{ 0, j�ω, j2�ω, · · ·, j(N − 1)�ω }. (5)

It is mentioned that the data window, �, is used in this paper
only when transforming an MHD variable into its time-domain
counterpart. Further details of the MHD can be found in [22].

Download English Version:

https://daneshyari.com/en/article/7112885

Download Persian Version:

https://daneshyari.com/article/7112885

Daneshyari.com

https://daneshyari.com/en/article/7112885
https://daneshyari.com/article/7112885
https://daneshyari.com

