
Electric Power Systems Research 121 (2015) 313–324

Contents lists available at ScienceDirect

Electric  Power  Systems  Research

j o ur na l ho mepage: www.elsev ier .com/ locate /epsr

Approximating  the  parameter-space  stability  boundary  considering
post-contingency  corrective  controls�

Magnus  Perninge ∗

Division of Automatic Control, Lund University, Lund, Sweden

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 27 June 2014
Received in revised form 12 October 2014
Accepted 9 November 2014
Available online 8 December 2014

Keywords:
Corrective control
Loadability
Optimal control
Stability boundary
Taylor’s expansions
Voltage stability

a  b  s  t  r  a  c  t

Lately,  much  work  in the  area  of  voltage  stability  assessment  has  been  focused  on  finding  post-
contingency  corrective  controls.  In this  article  a contribution  to this  area  will  be presented  where we
investigate  the  surface  of  maximal  loadability  while  allowing  for  post-contingency  corrective  controls.
This  objective  is  different  from  the  usual,  where  the aim  is  to include  the  post-contingency  controls
in  a security-constrained  optimal  power  flow.  Our aim  is  rather  to  find  approximations  of  the post-
contingency  stability  boundary,  in  pre-contingency  parameter  space,  while  including  the  possibility  for
post-contingency  corrective  controls.  These  approximations  can  then  be used  in,  for  example,  a  chance-
constrained  optimal  power  flow  routine.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

With the increasing amount of variable generation that we  see in
power systems today, knowing the stability margin in a given direc-
tion of stress is usually not sufficient for operating the system. To
obtain more reliable measures of system security we  want to have
global information about the stability margins. This global informa-
tion is expressed through the parameter-space stability boundary
�,  that separates parameters corresponding to stable equilibrium
points from those corresponding to unstable or infeasible ones.

Work has already been done in approximating the stability
boundary without corrective controls. An approach that will often
give conservative estimates is to define the stability margin as the
(minimal) distance to the stability boundary. Efficient algorithms
for the computation of this distance have been proposed [1–3].
In [4,5], sensitivities of the distance to the stability boundary to
changes in system parameters are given for small-signal and volt-
age stability, respectively. The use of the sensitivities can help the
system operator take optimal actions to either steer the system
away from instability or make the system return to stability fol-
lowing a contingency. In [6], a formula for a unified sensitivity of
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the loading margin to changes in system parameters for different
types of instabilities is given, and shown to give results that are
consistent with the existing sensitivities presented in, for example,
[5].

In [7], the stability boundary is approximated by hyperplanes
from the inside, so that the approximation is conservative when-
ever the stability region is convex. Examples are given where the
approximations are used for assessing security margins.

In [8], first- and second-order approximations of the small-
signal stability boundary are presented. The authors of [8] use the
implicit function theorem to express the relationship between the
parameters on the stability boundary.

In [9,10] it is suggested that a number of points on the stability
boundary should be computed by moving in different directions
in parameter space, starting from a given initial point. From these
points the entire boundary is then approximated using a neural
network.

In [11,12], the normal to and the curvature tensor of the stabil-
ity boundary are used to express second-order approximations of
the voltage stability boundary, thus giving an intuitive geometri-
cal expression of the second-order approximations. In [13] these
approximations were extended to small-signal stability as well as
thermal stability. A systematic way  of finding appropriate points to
compute the approximations in was also suggested. A special situ-
ation relating to long-term voltage stability was  described in [14]
and further investigated in [15].

In [16,17] second order approximations of the transient stability
boundary were proposed.
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Although many contributions have been made to the subject of
approximating parameter-space stability boundaries, none of them
consider the important extension of post-contingency corrective
controls. If corrective controls are not considered when dispatch-
ing the production, the system will in most situations be run in an
overly conservative manner.

In [18] the loadability limit surface with corrective controls, �CC,
was computed in a given direction of stress. The approach considers
a quasi-static load recovery and assumes that the post contingency
parameter trajectory only intersects the post-contingency stability
boundary at one single point, called the point of intersection. In a first
step, second order approximations of the post-contingency stabil-
ity boundary are used to get an initial prediction of the intersection
point. Then a set of necessary conditions for optimality gives a sys-
tem of equations that can be solved starting with the prediction
obtained in the first step.

In this article we will change view to approximating the entire
surface �CC by a number of quadratic polynomials. These poly-
nomials will be derived from Taylor’s expansions of the surface
at points on the different smooth parts that together constitute
�CC. To find the normal and the curvature of �CC we  exploit the
necessary conditions of optimality proposed in [18].

The approach taken is analogous to the one presented in [13] in
the sense that we search for a point on each encountered smooth
part of the stability boundary called the most important point of
that surface. At these points we make series approximations of �CC

based on local information.
The remainder of this article is organized as follows. First, in

Section 2 the notion of a stability boundary is introduced. Then,
in Section 3 a summary of stability limits with corrective controls,
based on [18], is given. In Section 4, the post-contingency stability
boundary with corrective controls, in pre-contingency parameter
space, is described and corner points thereof are discussed. In Sec-
tion 5, second order Taylor’s approximations for all different types
of smooth parts of �CC are derived. Section 6 is devoted to the more
practical issue of finding points to base the approximations on and
how to make sure that different approximations do not interfere
with each other. In Section 7, a numerical example is given. The
paper then ends with a discussion of the results of the numerical
example, computational complexity of the algorithm and general-
izations of the admissible controls, and a summary in Section 8.

2. The stability boundary without corrective controls

To understand the notion of a stability boundary with post-
contingency corrective controls we must first define the stability
boundary without corrective controls.

2.1. Stability limits

We  align the system parameters in the vector � ∈ R
m. The sys-

tem parameters can represent quantities such as load demand
parameters, or active power production. Later on, we  will split the
vector � into a sub-vector y ∈ R

k of controllable system parameters,
and a vector PL ∈ R

l of non-controllable system parameters.
From an initial parameter vector �p, e.g. present production and

consumption, the stability limit in the direction of stress ds ∈ Sm−1

(the unit sphere in R
m) is given by the solution to the optimization

problem

max
r∈R

{r : stable e.p. exists with � = �p + rds} (1)

This problem can be solved by various methods such as continu-
ation methods [19,20], optimization methods [21], direct methods
[22] and quasi-steady state (QSS) simulations [23,24].

Fig. 1. The power system used in the example.

2.2. The stability boundary

The stability boundary surface � is the boundary of the domain
wherein the system is small-signal stable. The surface � ⊂ R

m is
made up of a number of different smooth manifolds [2]. Due to
constraint switching there are two types of feasibility limits and we
get the following different types of points on the stability boundary
[13]

• SNB: A saddle-node bifurcation loadability limit is a loadability
limit that may  occur when the system Jacobian becomes singular.
This type of loadability limit is the most commonly addressed
loadability limit in voltage stability assessment VSA.

• SLL: Switching loadability limits [25] correspond to cases when
the power system becomes immediately unstable when a control
variable limit is reached.

• HB: Hopf Bifurcation points are points in parameter space where
the real part of one pair of complex eigenvalues of the dynamic
Jacobian becomes positive as the system parameters change so
that the system is no longer small-signal stable.

The stability boundary is not smooth but rather made up of a
number of smooth manifolds which intersect at non-smooth points
that are referred to as corner points (CPs).

2.3. Example

Consider the system depicted in Fig. 1. This system was  analyzed
in [25] and consists of three generators and one load. It is assumed
that node 1 is the slack node (where all power deviations are bal-
anced) and that the load is of the constant power type with a fixed
power factor. The system has three parameters that are allowed to
vary; Pg2, Pg3, and PLoad. It is also assumed that each generator has
a limited Ef with Elim

f
= 2.5968 p.u. for each generator.

In Fig. 2 the stability surface �pre corresponding to the original
system is plotted together with the stability boundary �post with
doubled impedance between nodes 5 and 6, when varying Pg3 and
PLoad, while keeping Pg2 fixed at 1.2 p.u.

As can be seen in the figure, at some level of Pg3, between 0.5
and 1 p.u., the stability surfaces are non-smooth.

Fig. 2. The pre- and post-contingency stability surfaces in the example.
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