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a  b  s  t  r  a  c  t

This paper  addresses  the  problem  of  determining  robust  three-term  output-feedback  power  system  sta-
bilizers  (PSSs)  (C1(s)  = (x1s +  x2 +  x3/s)  ; C2(s) = x1(1 +  x2s)/(1  +  x3s))  which  can  function  properly  over  wide
range  of  operating  conditions.  Necessary  and  sufficient  constraints  that characterize  the  admissible  set
of PSSs  parameters  are  derived  firstly  by applying  Routh-Hurwitz  (RH)  criterion  to the  characteristic
polynomial  of the  generalized  plant  model.  The  complete  set  of  stabilizing  PSSs  for  any  operating  point  is
therefore  determined  in  the controller  parameter  space  [x1, x2, x3] by  plotting  RH  constraints  at  this  point.
Since  the  design  parameters  are  load-dependent  and  have  to be  adjusted  at each  operating  condition,
an  interval  plant  is developed  to describe  uncertainties  in  the  model  parameters  imposed  by  continuous
variation  in  load  patterns.  Necessary  and  sufficient  constraints  for  Hurwitz  stability  of such  interval  plant
are derived  using  Kharitonov’s  theorem  where  robust  PSS  design  is  reduced  to simultaneous  stabiliza-
tion  of  finite  number  of  vertex/segment  plants.  The  stability  region  for each  of  these  plants  is plotted
using  RH  constraints  where  the  intersection  of the  resulting  stability  regions  yields  the  set of  parameters
that  guarantee  Hurwitz  stability  of the considered  interval  plant. Simulation  results  of  an  applicant  PSS
confirm  the  effectiveness  of  the  proposed  design  approach.

©  2014  Published  by  Elsevier  B.V.

1. Introduction

Power systems are often subjected to disturbances by sev-
eral reasons such as continuous load changes, set-point changes,
and faults. Consequently, it exhibit low frequency oscillations that
either decay gradually, or continue to grow, causing system separa-
tion. These low frequency oscillations are due to the lack of damping
of the electromechanical mode of the system [1–4]. The desired
additional damping can be provided by supplementary excitation
control through a power system stabilizer (PSS). The main problem
encountered in the conventional PSS design is that power systems
constantly experience changes in operating conditions due to varia-
tions in generation and load patterns. So, a conventionally designed
PSS may  fail to maintain stability over wide range of operating
points. Further, the performance of conventional PSS is degraded
once the deviation from the nominal point becomes significant. To
cope with uncertainties, imposed by continuous variation in oper-
ating points, has become the priority of the PSS designers. To make
the performance of a PSS robust, the design algorithm must account
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for power system uncertainties. Uncertainties in the power system
model can be unstructured in the form of norm-bounded param-
eter uncertainty [5,6], or structured associated with loading and
other varying operating conditions [7–11]. Various approximations
have been utilized in the modeling of uncertain systems includ-
ing �-synthesis [7–11], Lyapunov state-space based procedures
[12–15], and interval polynomial [16–20]. These approaches target
two main objectives; the first considers the evaluation of system
robustness under the effect of parametric uncertainties, while the
second considers the synthesis of PSSs that can guarantee robust-
ness under parametric uncertainties. In Refs. [7,8], Djukanovic et al.
have successfully applied the structured singular value (SSV) theory
to determine robust stability of a power system for a wide range of
operating conditions. A systematic procedure for sequential design
of decentralized controllers, in multimachine power system, was
studied in Ref. [9] where the robust performance in terms of the
structured singular value (SSV or �) was used as the measure
of control performance. Castellanos et al. [10,11] have examined
the application of SSV theory to the problem of evaluating the
robust stability of large power systems with structured uncertain-
ties where variations in system operating conditions and system
topology are modeled as structured uncertainties and included in
the nominal power system model. Rao et al. [12] reduced the con-
troller synthesis to solve a nonlinear optimization problem where
parametric uncertainty was  handled using Quantitative Feedback
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Nomenclature

All quantities are in per-unit unless otherwise stated
Tm mechanical torque
Te electrical torque
VT terminal voltage
E′

q voltage behind transient reactance
Efd field voltage
X ′

d generator d-axis transient reactance
Xd, Xq direct axis and quadrature axis synchronous reac-

tance
Re, Xe tie line resistance and reactance, respectively
ı torque angle (rad)
KE, TE exciter gain and time constant
Pg, Qg active and reactive power at generator bus
V∞ infinite bus voltage
Upss stabilizing signal (PSS output)
M inertia constant (s)
k1, . . .,  k6 parameters of the power system block-diagram
T ′

do open circuit d-axis time constant
ωo synchronous speed (rad/s)
�ω rotor speed deviation
s laplace operator
kp, ki, kd PID controller gains
K, T1, T2 parameters of a phase-lead compensator
x, x̄ lower and upper bounds of a variable x, respectively
K1, K2, . . .,  K4 Kharitonov vertex polynomials
NSi, i = 1, . . .,  4 Kharitonov segments associated with Ni(s),

i = 1,2, . . .,  4.
Gs(s) family of Kharitonov segment plants
�ij polynomial characterizing the segment plant Gij(s,

�)
C(s) controller transfer function (TF)
R31, R21, R11, R01 Hurwitz residues for s3, s2, s1, and s0 rows
k∗

p, k∗
i

pre-specified values of kp and ki
kcr

i
, kcr

d
critical values of the PID controller’s parameters ki
and kd.

∅  empty set
� damping ratio

Theory (QFT). In Ref. [13], the design of a robust decentralized
state feedback PSSs was considered to guarantee pole-placement
in a pre-specified region in the left-half of the complex plane.
The design assumed full state measurability and considered poly-
topic uncertainty. Werner et al. [14] expressed the uncertainties
due to variable operating points using Linear Fractional Transfor-
mation (LFT) and then an LMI  technique is applied to find a 4th
order H∞ controller under regional pole placement constraints.
Soliman et al. [15] suggested an iterative LMI  algorithm to design
robust decentralized PID based PSSs. In Ref. [16], Soliman suggested
an interval arithmetic approach for computing the admissible set
of robust proportional-derivative (PD) based PSS using interval
Routh-Hurwitz arrays. The authors of Ref. [17] applied a general-
ized Kharitonov’s theorem to parameter perturbations in the state
space model of the power system with a PSS. The parameters of the
PSS were considered as candidates for perturbations and the region
of stability was computed using the edge theorem and the seg-
ment lemma. The design was carried out at certain operating point
where only uncertainties in controller parameters are reported. In
Ref. [18], uncertainties due to continuous variation in the operat-
ing point, was described by an interval polynomial. The design of a
phase-lead PSS was reduced to simultaneous stabilization of eight
vertex plants derived using Kharitonov’s theorem. Root-locus tech-
nique was applied to compute only the gain where compensator’s

zero and pole time constants were pre-specified to ensure fast
response. Rigatos and Saino [19] extended the results of Ref. [18]
and presented the two-stage stabilizer. However, time constants
of the compensator’s poles and zeros were also pre-specified. Soli-
man  et al. [20] presented a reconfigurable design of fault-tolerant
PSS and FACTs controllers using Kharitonov’s theorem where sys-
tem uncertainties were represented by an interval polynomial. The
gains of the controllers are computed using particle swarm opti-
mization (PSO). The authors suggested an eigenvalue-based cost
function that ensures a specific settling time. Computing the admis-
sible set of robust phase-lead compensator’s parameters, which
can stabilize the plant under wide range of operating conditions,
was not targeted in Refs. [17–20]. Furthermore, the case of PID
based PSSs was  not dealt with. In Refs. [21,22], robust PSS syn-
thesis is reduced to a simultaneous stabilization of some operating
points and then evolutionary algorithms such as genetic algorithms
and particle swarm are applied to compute controller parameters
while minimizing eigenvalue-based objective functions. Concisely,
robust PSS design involves three basic issues regarding uncer-
tainty modeling, controller order and solution algorithm. Robust
PSS design techniques often result in a unique controller without
considering the set of all admissible PSSs. Computing the set of
admissible parameters gives great flexibility while implementing
PSSs.

This paper presents a step to attack this problem by charac-
terizing such set for a single-machine infinite-bus system. The
robustness issue is treated using generalized Kharitonov theorem,
while stability conditions derived with Routh-Hurwitz criterion are
used to parameterize the stabilizing controllers. Two approaches
are proposed for designing robust PID-based PSSs. The first one con-
siders simultaneous stabilization of four segment plants while the
second approach considers simultaneous stabilization of sixteen
vertex plants. For phase-lead compensator design, simultaneous
stabilization of only eight vertex plants is considered. The rest of
the paper is organized as follows. Section 2 considers the challenge
facing the design of PSSs and develops an interval plant model to
capture all uncertainties imposed by loading conditions. Necessary
and sufficient conditions for stabilizing an interval plant via a three-
term controller using generalized Kharitonov theorem are briefly
reviewed in Section 3. Parameterization of the robust PID-based
PSS and that of robust phase-lead PSSs are presented in Sections 4
and 5, respectively. Section 6 presents the results while Section 7
concludes this work.

2. Problem formulation

The system under study comprises a single-machine connected
to an infinite bus through a tie-line. Such system is commonly used
in the analysis and design of a PSS. The system is represented by
a fourth order linearized model as proposed by deMello and Con-
cordia [3]. The linearized model of this system can be described
by the block diagram shown in Fig. 1. The system data and nonlin-
ear model are given in Appendix A.1. The model parameters k1, k2,
k4, k5, k6 shown in Fig. 1 depend basically on the values of P and
Q while k3 depends on the tie-line reactance only. These param-
eters could be expressed as explicit functions of P and Q as given
in Ref. [18]. The state space realization of the system is given as
follows:

ẋ = A(k)x + Bu, y = Cx (1)

where x ∈ R4×1 is the state vector defined by x =
[ �ı �ω �E′

q �Efd ]
T
, u is the stabilizing signal and the

output y is typically represented by the angular speed deviation
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