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a  b  s  t  r  a  c  t

Detection  and  characterization  of the dynamic  phenomena  that arise  when  the power  system  is  sub-
jected  to  a  perturbation  become  a significant  problem.  Therefore,  a great  deal  of  attention  has  been  paid
to identify  oscillatory  activity  in  interconnected  power  systems  through  the  use  of  wide-area  monitoring
schemes.  This  paper  presents  a method  for  detection  of  propagation  features  from  wide-area  system
measurements  through  its  traveling  and  standing  components,  exploring  the relationship  between  com-
plex  modes  and  the  wave  motion.  The  method  consists  in a  biorthogonal  decomposition  considered  from
a statistical  perspective  which  has  the potential  to  be applied  for  wide-area  monitoring  and  analysis
using  real-time  synchronized  measurements  recorded  from  power  systems.  Although  the  technique  is
general, data  obtained  from  global  positioning  system  (GPS)-based  multiple  phasor  measurement  units
(PMUs) from  a real event  in  power  systems  are  used  to examine  the potential  usefulness  of  the  proposed
methodology.  Furthermore,  the  decomposition  technique  based  on  optimal  persistent  patterns  (OPPs)
for  time-varying  fields  is used  to  validate  the  applicability  of  the method.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Statistical models have been widely used in many engi-
neering and science applications for the analysis of space–time
varying system response from measured data; e.g., unsteady
fluid flow, turbulence, optimal control, structural dynamics,
heat transfer and system identification have been reported
[1,3–10,13,15–17,19,20,23–28,30,31,34,37–40,42]. These method-
ologies use statistical techniques that capture various forms of
spatio-temporal variability, such as empirical orthogonal func-
tion (EOF), principal interaction pattern (PIP), principal oscillation
pattern (POP), optimal persistent pattern (OPP), and canonical
correlation analysis (CCA) [4,5,8,10,16,17,19,23–26,28,38–40,42].
Underlying issues of these techniques, such as the estimation of
propagating and standing features that may  be associated with
observed or measured data and their applications to space–time
varying processes do not seem to be recognized or, at least, they
have not been reported. This fact motivates the derivation of a
model based on statistical techniques to identify the behavior of
the system to be dealt with. In [3,9,42], local models of spatio-
temporally complex fields are used for the study and detection
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of propagating features in space–time varying processes using a
biorthogonal decomposition which splits a space–time varying
field into a weighted linear sum of orthogonal spatial and temporal
modes. When simultaneously measured responses throughout an
interconnected power system are available, modal behavior should
be extracted using correlation techniques rather than individual
analysis of the system response. This provides a global picture
on the system behavior and enables statistical characterization
of the observed phenomena which are used for the monitoring
and analysis of local and inter-area electromechanical oscillations
in power systems. In this paper, we provide a spatio-temporal
decomposition technique based on the use of time synchro-
nized measured data recorded by multiple phasor measurement
units (PMUs) in power systems to cope with increasing complex-
ity of information in the use of wide-area monitoring schemes.
The methodology is proposed to identify and to extract dynami-
cally independent spatio-temporal patterns using a biorthogonal
decomposition based on the complex EOF analysis and the sepa-
rability of complex correlation functions. This approach provides
an efficient and accurate way  to compute standing and prop-
agating features of general nonstationary processes identifying
important information for the analysis of dynamic phenomena in
power systems. Moreover, this may  lead to greater understand-
ing of the mechanism generating the measured data and lead to
better prediction and understanding of the oscillatory activity in

0378-7796/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.epsr.2014.01.024

dx.doi.org/10.1016/j.epsr.2014.01.024
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2014.01.024&domain=pdf
mailto:pesquive@gdl.cinvestav.mx
dx.doi.org/10.1016/j.epsr.2014.01.024
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Fig. 1. Conceptual diagram illustrating the phenomenon of the spatial and temporal
energy distribution on a space–time varying field.

interconnected systems. The method allows the introduction of
several measures that define moving features in space–time vary-
ing fields, such as spatial amplitude and phase function, temporal
amplitude and phase function, spatial and temporal energy, wave
number, angular frequency and average phase speed which can be
used for monitoring electrical and electromechanical stability mar-
gins implementing the wide area measurement systems (WAMS),
and for preventing or controlling instability in large power sys-
tems. This decomposition is viewed as the time–space-symmetric
version of the Karhunen–Loève expansion or also called complex
EOF analysis. As illustrative case, a four-machine two-area test
system is presented to examine the potential of the proposed
technique. Additionally, undamped oscillation data in power sys-
tems recorded by GPS-based multiple PMUs from a real event in
the northern systems of the Mexican interconnected system (MIS)
[29–31] are used to validate the ability of the method to character-
ize the electromechanical oscillatory dynamics of interconnected
power systems. The obtained results from the proposed method
are compared for simplicity with the decomposition technique of
OPPs for time-varying fields [10], particularly, in the determina-
tion of a set of patterns that optimize a measure of decorrelation
for longest time. However, other approaches can be used to char-
acterize modal behavior that require large analytical formulations
or that are based on a single data set [1,7,17,23–26,40].

2. Treatment of spatio-temporal data

In order to analyze oscillatory dynamics in a wide-area distri-
bution system, we note that the relationship between spatial and
temporal behavior in spatio-time varying fields can be obtained
by mapping the spatio-temporal information into a space and
time grid, i.e., each component u(x, t) of the space–time varying
field is represented by the field value at time and spatial posi-
tion x [30]. Fig. 1 provides a conceptual representation illustrating
that the relationship between spatial and temporal variability in
a space–time varying field is conveniently represented by a two-
dimensional array [3,9].

Using the above notion to introduce more general ideas, we
assume that a data set recorded from measurements or numeri-
cal simulations of a power system is available at n spatial locations
defined by xj, j = 1, 2, . . .,  n at N instants in time, tk, k = 1, 2, . . .,  N,
which can be represented by an n × N-dimension matrix,

X(xj, tk) =

⎡
⎣ u(x1, t1) · · · u(xn, t1)

...
. . .

...
u(x1, tN) · · · u(xn, tN)

⎤
⎦, where typically, n /= N,

so that X is generally rectangular; the rows of this matrix capture
the spatial information, while the columns capture the temporal
information [29,30]. On the following sections, the theoretical fun-
damentals of empirical orthogonal functions which represent the

bases of the proposed methodology are presented. Most of the
notation is standard, vectorial quantities are denoted by boldface
letters and scalar quantities by italic letters. Other symbols used
are defined in the text.

3. Background of the EOF method

The fundamental idea of the EOF analysis is to find a basis ϕ for
linear, infinite-dimensional Hilbert space L2([0, 1]), that maximizes
the averaged projection of the response matrix X(x, t), suitably
normalized [18]. The corresponding function for the constrained
variational problem is solved and reduced to:∫ 1

0

[∫ 1

0

〈u(x)u∗(x|)〉ϕ(x|)dx| − �ϕ(x)

]∗
 ∗(x)dx = 0 (1)

where the (*) denotes the conjugate transpose (sometimes denoted
as Hermitian, H) and the (|) denotes transpose vector. Thus, if
 *(x) = 0, the optimal basis are given by the eigenfunctions ϕj of
the integral equation∫ 1

0

〈u(x)u∗(x|)〉ϕ(x|)dx| = �ϕ(x), (2)

whose kernel is the averaged autocorrelation function

〈u(x)u∗(x)〉def= C(x, x|). Under this assumption, the integral (2)
can be written as

Cϕ(x) = �ϕ(x) (3)

where the resulting autocorrelation matrix C is a real, symmet-
ric, positive and semi-definite matrix. Therefore, the optimization
problem can be recast as the problem of finding the largest eigen-
vectors ϕ of Eq. (3), called empirical orthogonal functions (EOFs);
the corresponding eigenvalues are real, nonnegative, and ordered
so that �1 ≥ �2 ≥ , K, ≥ �j ≥ 0 [18]. This method, also called conven-
tional EOF analysis, cannot be used to detect propagation features
due to the assumption that each field is represented as a spatially
fixed pattern of behavior and lack of phase information, becoming
prohibitive to practical applications [2,12,29].

Now, if we  assume that  ∗(x) /= 0, then (1) can be rewritten as∫ 1

0

∫ 1

0

ϕ∗(x|)〈u(x)u∗(x|)〉 ∗(x)dx|dx =
∫ 1

0

ϕ∗(x)� ∗(x)dx (4)

such that, the inner product (ϕ∗(x)C�∗(x)) /= 0, with orthogonal
eigenvectors ϕ,  , i.e.,

ϕiϕj =
{

0, i /= j

ı(ϕ), i = j
and  i j =

{
0, i /= j

ı( ), i = j

From (1) it can be seen that if there exists an arbitrary variation
(spatial),  *(x) /= 0, then the original field can be reconstructed
using two  optimal orthogonal basis ϕ,  , given from (4). Based on
this notion, an efficient technique to find the optimal basis using
complex EOF analysis (CEOFs) is proposed in the next section.

4. Proposed methodology

Consider that measured data were recorded from a power sys-
tem network during an oscillatory activity. In general, the dynamic
phenomena that arise when the power system is subjected to a
perturbation can be represented by

X(x, t) = Xswc(x, t) + Xtwc(x, t) (5)

where Xswc and Xtwc denote the standing and traveling wave com-
ponents that can be associated with electromechanical oscillations
in power systems.
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