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a b s t r a c t 

This paper studies a computational method to deal with a singular optimal control problem by mini- 

mizer flows in a viscosity approximation to the Hamilton–Jacobi–Bellman equation. The boundary of the 

compact constraint set of control variable is intersected with a class of minimizer flows to yield a Hamil- 

tonian extremal function in rewriting the HJB equation. The analysis properties of the flow are revealed 

in a global optimization framework. An example on computing a minimizer flow and a Hamiltonian ex- 

tremal function is presented. An application of the minimizer flow in a non-smooth optimization problem 

is also mentioned. 
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1. Primal problem 

In this paper we study the following optimal control problem: 

(P) : min J(0 , x 0 , u ) = Q(x (T )) + 

∫ T 

0 

F (x (t )) dt , (1.1) 

s.t. ˙ x = Ax + Bu, x (0) = x 0 , t ∈ [0 , T ] , (1.2) 

x ∈ R 

n , u ∈ U = { u : p(u ) ≤ 1 } ⊂ R 

m , 

where Q ( x ): R n → R 1 , F ( x ): R n → R 1 are continuously differentiable 

and p ( u ): R m → R 1 is twice continuously differentiable. We assume 

that ∇ 

2 p ( u ) > 0, ∀ u ∈ R m , and 

lim inf ‖ u ‖→∞ 

p(u ) 

‖ u ‖ 

2 
> 0 . (1.3) 

Apparently we need to suppose that U is not empty. In the lin- 

ear control system (1.2) , A ∈ R n × n , B ∈ R n × m are given matrices, and 

x 0 is a given vector in R n . 

Associated with the problem (P) , for the state x and control 

u with the Lagrange multiplier λ, the Hamiltonian is defined as a 

function: 

H(x, u, λ) = λT (Ax + Bu ) + F (x ) . (1.4) 

Noting that H uu ( x , u , λ) ≡ 0, we see that (P) is a singular opti- 

mal control problem( [1,8] ). 
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One may note that in general the constraint set U may be un- 

bounded. For example, we can put forth a simple example in R 1 

for which p(u ) = e u so that the corresponding set U is unbounded, 

noting that lim u →−∞ 

e u = 0 . But with the assumption (1.3) we can 

show that the constraint set U is bounded and consequently it is 

compact. For example, if p(u ) = u T u, then the set U is just the unit 

ball in R m . 

Lemma 1.1. The constraint set U is compact in R m . 

Proof. Since p ( u ) is continuously differentiable, the definition of 

the set U = { u : p(u ) ≤ 1 } implies that U is closed. Next we show 

that U is bounded. It follows from (1.3) that there exist posi- 

tive numbers M and β such that, when ‖ u ‖ ≥ M , p ( u ) ≥β‖ u ‖ . Let 

u ∈ U . But if ‖ u ‖ ≥ M , then ‖ u ‖ ≤ β−1 p(u ) ≤ β−1 . Thus, U ⊂ {‖ u ‖ ≤
max (M, β−1 ) } . Consequently U is bounded. The lemma has been 

proved. �

On the theoretic aspect, it is difficult to find out an optimal con- 

trol for a nonlinear problem [1,8,9] . Traditionally, in most works on 

nonlinear optimal control, the authors focus on either numerical 

viscosity solution to Hamilton–Jacobi–Bellman equations [4,6,10] or 

theoretical study concerning Pontryagin maximum principle 

[7,11] . 

By the classical computational approach to a singular optimal 

control problem [1] , instead of solving the problem (P) , the au- 

thors consider, for a sufficiently small positive number α, the fol- 

lowing optimal control problem: 

(P α) : min J(0 , x 0 , u ) = Q(x (T )) + 

∫ T 

0 

[ 
F (x ) + 

α

2 

u 

T u 

] 
dt (1.5) 
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s.t. ˙ x = Ax + Bu, x (0) = x 0 , t ∈ [0 , T ] , 

x ∈ R 

n , u ∈ U = { u : p(u ) ≤ 1 } ⊂ R 

m . 

In stead of the above approach, this paper presents a computa- 

tional method to deal with the viscosity solution of the Hamilton–

Jacobi–Bellman equation with respect to the singular optimal con- 

trol problem (P) . 

Remark 1.1. Let me mention a little bit of the motivation of the 

approach in this paper. By the traditional way to deal with a sin- 

gular optimal control, when using the Pontryagin principle, people 

always meet difficult problems on how to determine the extremal 

control with respect to the state or co-state variable. In this paper, 

we try to avoid establishing a relationship between the extremal 

control and the state or co-state variable. We establish a relation- 

ship between an extremal control and value function of the opti- 

mal control problem by global optimization method instead. 

The rest of the paper is organized as follows. In Section 2, 

we focus on Hamilton–Jacobi–Bellman equation in a minimization 

framework. In Section 3 , we present a differential flow to make 

Hamiltonian extremal function corresponding to the Hamilton–

Jacobi–Bellman equation with an example to visualize the comput- 

ing process. In Section 4 , we discuss how to compute numerically 

the viscosity solution to the Hamilton–Jacobi–Bellman equation. An 

application of the minimizer flow in a non-smooth optimization 

problem is mentioned in Section 5 . 

2. Hamilton–Jacobi–Bellman equation 

Associated with the optimal control problem (P) , the value 

function is introduced as follows. For t ∈ (0, T ), x ∈ R n we consider 

the problem: 

min J(t, x, u ) = Q(x (T )) + 

∫ T 

t 

[ F (x )] ds (2.1) 

s.t. ˙ x = Ax + Bu, x (t) = x, s ∈ [ t, T ] , x ∈ R 

n , p(u ) ≤ 1 . (2.2) 

Define the value function [9] with respect to the primal prob- 

lem (P) 

V (t, x ) = inf J(t, x, u ) . (2.3) 

By classical principle of optimality, we know that [4,6,9] , the 

value function V ( t , x )(defined in (2.3) ) is just the viscosity solution 

to the Hamilton–Jacobi–Bellman equation 

−v t (t, x ) = inf 
p(u ) ≤1 

{ v T x (t, x )[ Ax + Bu ] + F (x ) } , (2.4) 

with the boundary condition v (T , x ) = Q(x ) . Indeed, by classical 

theory of viscosity solution [4,6] to HJB equation, noting that the 

state set of the linear system is bounded when the control taking 

value in a compact set, one can show that the value function V ( t , x ) 

is a unique viscosity solution to the Eq. (2.4) . For computing a vis- 

cosity solution to the HJB equation (2.4) , we present a Cauchy ini- 

tial value problem for given small positive real number ε: 

ε�x v (t, x ) = v t (t, x ) + inf 
p(u ) ≤1 

{ v T x (t, x )[ Ax + Bu ] + F (x ) } , (2.5) 

with the boundary condition v (T , x ) = Q(x ) . When 0 < ε � 1, the 

Cauchy initial value problem (2.5) is called a viscosity approxima- 

tion to the Hamilton–Jacobi–Bellman equation (2.4) . It has been 

proved for the convergence of (2.5) –(2.4) in the classical theory 

of viscosity solution to HJB equation [4,6] . In the rest of the pa- 

per we study how to compute the viscosity approximation to the 

Hamilton–Jacobi–Bellman equation (2.5) . 

Checking the right side of the Eq. (2.5) , we find that the inf pro- 

cess works on the control variable u and is not relevant to the state 

variable x and the time variable t . For given x and t we consider to 

deal with the optimization(for obtaining a global minimizer): 

min 

p(u ) ≤1 
[ v T x (t, x ) Bu ] . (2.6) 

Therefore we turn to consider the following optimization with 

respect to a given parameter vector λ∈ R m : 

min 

p(u ) ≤1 
[ λT u ] . (2.7) 

Remark 2.1. Note that, when λ = 0 , the optimization in (2.7) is 

trivial and the corresponding minimizer of the optimization will 

be granted to be the critical point of p ( u ) [3] . On the other hand, 

when λ  = 0, the minimizer can not be in the interior of U , other- 

wise at the minimizer we have ∇ u [ λT u ] = λ = 0 to meet a con- 

tradiction. Consequently when λ  = 0, if u ∗ is a minimizer, then 

p(u ∗) = 1 (noting that p ( u ∗) < 1 implies that u ∗ is an interior point 

of U ). Next we claim that ∇p ( u ∗)  = 0. In fact, if ∇p(u ∗) = 0 , then 

u ∗ is the unique minimizer of p ( u ) over R m noting that ∇ 

2 p ( u ) > 0 

over R m . It implies that U = { u : p(u ) ≤ 1 } consists of only one 

point. It is a trivial case. Being a nonzero vector ∇p ( u ∗), it is lin- 

ear independent. By classical optimization theory, the minimizer of 

λT u over U is a KKT point [5] . Thus there exists a positive number 

ρ∗ such that λ + ρ∗∇p(u ∗) = 0 . 

3. A minimizer flow 

In this section, for given λ∈ R m we seek a minimizer u of the 

optimization problem (2.7) to create a function u = h (λ) which is 

bounded and measurable. In what follows we present a differential 

flow to define h ( λ). 

Lemma 3.1. For given λ∈ R m and ρ > 0, there exists a unique 

u λ, ρ ∈ R m such that λ + ρ∇p(u λ,ρ ) = 0 . 

Proof. With the assumption (1.3) , by Lemma 2.1 in [10] , there ex- 

ists a unique minimizer of the function 

λ
ρ u + p(u ) over R m noting 

that ρ > 0 here. Consequently, there exists a unique point u λ, ρ ∈ R m 

such that λ + ρ∇p(u λ,ρ ) = 0 noting the assumption for the opti- 

mal control problem (P) : ∇ 

2 p ( u ) > 0, ∀ u ∈ R m . The lemma has been 

proved. 

Associated with the optimization problem (2.7) , a differential 

flow to solve the optimization problem (2.7) is presented as fol- 

lows. Define a Lagrange function 

L (ρ, u ) = λT u + ρ(p(u ) − 1) . 

We have 

∇ u L (ρ, u ) = λ + ρ∇p(u ) . (3.1) 

By Lemma 3.1 , for ρ = 1 , we can solve the equation 

∇ u L (1 , u ) = λ + ∇p(u ) = 0 , (3.2) 

to obtain a unique solution u = u λ. Since ∇ 

2 p ( u ) > 0, ∀ u ∈ R m , u λ is 

continuously dependent on λ. Further we conclude the following 

result. �

Theorem 3.1. The differential flow ˆ u (ρ) , which is well defined on 

(0 , + ∞ ) by the ordinary differential equation 

du 

dρ
+ [ ρ∇ 

2 p(u )] −1 ∇p(u ) = 0 , u (1) = u λ, (3.3) 

satisfies 

λ + ρ∇p( ̂  u (ρ)) ≡ 0 . (3.4) 

Proof. Since ∇ 

2 p ( u ) > 0, ∀ u ∈ R m , for ρ ∈ (0 , + ∞ ) there exists a 

unique solution to the following ordinary differential equation 

(3.3) [2] . Then we have for ρ ∈ (0 , + ∞ ) 
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