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This paper studies a computational method to deal with a singular optimal control problem by mini-
mizer flows in a viscosity approximation to the Hamilton-Jacobi-Bellman equation. The boundary of the
compact constraint set of control variable is intersected with a class of minimizer flows to yield a Hamil-
tonian extremal function in rewriting the HJB equation. The analysis properties of the flow are revealed
in a global optimization framework. An example on computing a minimizer flow and a Hamiltonian ex-
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1. Primal problem

In this paper we study the following optimal control problem:
T

(P) : minj(0, xo, u) =Q(X(T))+/ F(x(t))dt, (11)
0

s.t.Xx=Ax+Bu, x(0) =xq, t € [0, T], (1.2)
xeR" ueU={u:p() <1} cR™,

where Q(x): R" —R!, F(x): R" —R! are continuously differentiable
and p(u): R™ — R! is twice continuously differentiable. We assume
that V2p(u) >0, Yu e R™, and

lim infM > 0. (1.3)
llull o0 [u]|2

Apparently we need to suppose that U is not empty. In the lin-
ear control system (1.2), AcR"*" BeR"*™ are given matrices, and
Xg is a given vector in R™.

Associated with the problem (P), for the state x and control
u with the Lagrange multiplier A, the Hamiltonian is defined as a
function:

H(x,u, A) = AT(Ax + Bu) + F(x). (1.4)

Noting that Hyy(x, u, A)=0, we see that (P) is a singular opti-
mal control problem([1,8]).

E-mail address: 85124@tongji.edu.cn

https://doi.org/10.1016/j.ejcon.2018.03.001

One may note that in general the constraint set U may be un-
bounded. For example, we can put forth a simple example in R!
for which p(u) = e* so that the corresponding set U is unbounded,
noting that lim,_, _ e" = 0. But with the assumption (1.3) we can
show that the constraint set U is bounded and consequently it is
compact. For example, if p(u) = uTu, then the set U is just the unit
ball in R™,

Lemma 1.1. The constraint set U is compact in R™.

Proof. Since p(u) is continuously differentiable, the definition of
the set U = {u: p(u) < 1} implies that U is closed. Next we show
that U is bounded. It follows from (1.3) that there exist posi-
tive numbers M and S such that, when ||u|| >M, p(u)> B|u||. Let
ueU. But if ||ul| = M, then |lu|| < B~1p(u) < B~1. Thus, U c {|lu|l <
max(M, B~1)}. Consequently U is bounded. The lemma has been
proved. O

On the theoretic aspect, it is difficult to find out an optimal con-
trol for a nonlinear problem [1,8,9]. Traditionally, in most works on
nonlinear optimal control, the authors focus on either numerical
viscosity solution to Hamilton-Jacobi-Bellman equations [4,6,10] or
theoretical study concerning Pontryagin maximum principle
[711].

By the classical computational approach to a singular optimal
control problem [1], instead of solving the problem (7), the au-
thors consider, for a sufficiently small positive number «, the fol-
lowing optimal control problem:

T
(Py) - min](O,xo,u):Q(x(T))+/() [F(x)-}-%uTu]dt (15)
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s.t. X =Ax+Bu, x(0) =xq, t € [0, T],
xeR, ueU={u:p() <1} cR™

In stead of the above approach, this paper presents a computa-
tional method to deal with the viscosity solution of the Hamilton-
Jacobi-Bellman equation with respect to the singular optimal con-
trol problem (P).

Remark 1.1. Let me mention a little bit of the motivation of the
approach in this paper. By the traditional way to deal with a sin-
gular optimal control, when using the Pontryagin principle, people
always meet difficult problems on how to determine the extremal
control with respect to the state or co-state variable. In this paper,
we try to avoid establishing a relationship between the extremal
control and the state or co-state variable. We establish a relation-
ship between an extremal control and value function of the opti-
mal control problem by global optimization method instead.

The rest of the paper is organized as follows. In Section 2,
we focus on Hamilton-Jacobi-Bellman equation in a minimization
framework. In Section 3, we present a differential flow to make
Hamiltonian extremal function corresponding to the Hamilton-
Jacobi-Bellman equation with an example to visualize the comput-
ing process. In Section 4, we discuss how to compute numerically
the viscosity solution to the Hamilton-Jacobi-Bellman equation. An
application of the minimizer flow in a non-smooth optimization
problem is mentioned in Section 5.

2. Hamilton-Jacobi-Bellman equation

Associated with the optimal control problem (7), the value
function is introduced as follows. For t<(0, T),xcR" we consider
the problem:

minJ(¢, x, 1) = Q(x(T)) + /T[F(x)]ds 21)

st.x=Ax+Bu, x(t)=x, se[t,T], xeR", p(u) <1. (2.2)

Define the value function [9] with respect to the primal prob-
lem (P)

V(t,x) =inf](t, x, u). (2.3)

By classical principle of optimality, we know that [4,6,9], the
value function V(t, x)(defined in (2.3)) is just the viscosity solution
to the Hamilton-Jacobi-Bellman equation

—v(t,X) = p(i&])il{vZ(t, X)[Ax + Bu] + F(x)}, (2.4)

with the boundary condition v(T,x) = Q(x). Indeed, by classical
theory of viscosity solution [4,6] to HJB equation, noting that the
state set of the linear system is bounded when the control taking
value in a compact set, one can show that the value function V(t, x)
is a unique viscosity solution to the Eq. (2.4). For computing a vis-
cosity solution to the HJB equation (2.4), we present a Cauchy ini-
tial value problem for given small positive real number €:

eAU(t,X) = Ve (L, X) + (ir}f1{v,f(t, X)[Ax + Bu] + F(x)}, (2.5)
p(u)<

with the boundary condition v(T,x) = Q(x). When 0 <€ «1, the
Cauchy initial value problem (2.5) is called a viscosity approxima-
tion to the Hamilton-Jacobi-Bellman equation (2.4). It has been
proved for the convergence of (2.5)-(2.4) in the classical theory
of viscosity solution to HJB equation [4,6]. In the rest of the pa-
per we study how to compute the viscosity approximation to the
Hamilton-Jacobi-Bellman equation (2.5).

Checking the right side of the Eq. (2.5), we find that the inf pro-
cess works on the control variable u and is not relevant to the state

variable x and the time variable t. For given x and t we consider to
deal with the optimization(for obtaining a global minimizer):

min [v] (t, X)Bu]. (2.6)
pu)=<1

Therefore we turn to consider the following optimization with
respect to a given parameter vector A € R™:
min [A7u]. (2.7)
p(w)=1
Remark 2.1. Note that, when A =0, the optimization in (2.7) is
trivial and the corresponding minimizer of the optimization will
be granted to be the critical point of p(u) [3]. On the other hand,
when A #0, the minimizer can not be in the interior of U, other-
wise at the minimizer we have Vy[ATu]=A =0 to meet a con-
tradiction. Consequently when A #0, if u* is a minimizer, then
p(u*) =1 (noting that p(u*) <1 implies that u* is an interior point
of U). Next we claim that Vp(u*)#0. In fact, if Vp(u*) =0, then
u* is the unique minimizer of p(u) over R™ noting that V2p(u)=>0
over R™ It implies that U = {u: p(u) < 1} consists of only one
point. It is a trivial case. Being a nonzero vector Vp(u*), it is lin-
ear independent. By classical optimization theory, the minimizer of
ATu over U is a KKT point [5]. Thus there exists a positive number
p* such that A + p*Vp(u*) =0.

3. A minimizer flow

In this section, for given A € R™ we seek a minimizer u of the
optimization problem (2.7) to create a function u = h(A) which is
bounded and measurable. In what follows we present a differential
flow to define h(A).

Lemma 3.1. For given AcR™ and p >0, there exists a unique
u;, p €R™ such that A + pVp(u, ,) =0.

Proof. With the assumption (1.3), by Lemma 2.1 in [10], there ex-
ists a unique minimizer of the function %u + p(u) over R™ noting
that p > 0 here. Consequently, there exists a unique point u; , € R™
such that A + pVp(uy ,) = 0 noting the assumption for the opti-
mal control problem (P): V2p(u)> 0, Yu € R™. The lemma has been
proved.

Associated with the optimization problem (2.7), a differential
flow to solve the optimization problem (2.7) is presented as fol-
lows. Define a Lagrange function

L(p.u) =ATu+ p(p(u) —1).

We have

VuLl(p,u) = A+ pVp(u). (3.1)
By Lemma 3.1, for p = 1, we can solve the equation

VuL(1,u) =X + Vp(u) =0, (3.2)

to obtain a unique solution u = u,. Since V2p(u) >0, YueR™, u, is
continuously dependent on A. Further we conclude the following
result. O

Theorem 3.1. The differential flow ii(p), which is well defined on
(0, +c0) by the ordinary differential equation

j—; [PV Vp() =0, u(1) = uj. (33)
satisfies
A+ pVp(i(p)) = 0. (3.4)

Proof. Since V2p(u)>0, YueR™, for p e (0,+00) there exists a
unique solution to the following ordinary differential equation
(3.3) [2]. Then we have for p € (0, +00)
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