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Abstract: The aim of this paper is to present a modified explanation of the classic internal
model principle for certain class of finite-dimensional, time-invariant, deterministic fractional-
order systems commonly known as fractional systems of commensurate order. The necessary
and sufficient conditions for perfect command tracking and disturbance rejection are provided.
The difficulty of applying the classic internal model principle to fractional-order systems is
due to the difference between integer-order and fractional-order systems from the zero-pole
cancellation point of view. The notion of zero-pole cancellation is discussed for the systems under
consideration in a well posed mathematical framework. It is also shown that fractional elements
can be used for command tracking and disturbance rejection purposes which provides more
flexibility for controller design applications. Two illustrative examples confirm the applicability
of the proposed theorems.
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1. INTRODUCTION

The idea of internal model principle was first introduced in
the work of Francis and Wonham (1976) which dealt with
the regulator problem for linear, time-invariant, finite-
dimensional systems with deterministic disturbance and
reference signals. The main result of that work, for the
closed-loop system shown in Fig. 1, is that the controller
C(s) must incorporate in the feedback path a suitable
model of the dynamic structure of the disturbance and
reference signal in order to achieve perfect asymptotic
disturbance rejection and command tracking. That is why
an integrator must be provided in the forward path of a
given stable closed-loop system for tracking the step input
without steady-state error.

In recent years there has been an increasing attention
to fractional-order systems. These systems are of interest
for both modelling and controller-design purposes. In the
field of continuous-time modelling, fractional derivatives
have proved to be useful in linear viscoelasticity, acoustics,
rheology, polymeric chemistry, biophysics, etc (Oldham
and Spanier, 1974; Hilfer, 2000). In general, fractional-
order systems are useful to model various stable physi-
cal phenomena (commonly diffusive type systems) with
anomalous decay, say those that are not of an exponential
type. For example, Miller and Ross (1993) introduced a
real-world system with impulse response

h(t) =
√

2gπ

Γ(3/2)
t
1/2
+ , (1)

which corresponds to the transfer function

H(s) =
√

2gπ

s3/2
. (2)

As an example of using fractional derivatives for modelling,
Beyer and Kempfle (1995) studied the generalized damp-
ing equation

(D2 + aDq + b)x(t) = f(t), q ∈ (0, 2) (3)

and discussed the advantages of fractional modelling. The
transfer function of the above system is easily found to be

H(s) =
X(s)
F (s)

=
1

s2 + asq + b
. (4)

In the field of linear viscoelasticity, Glöckle et al. (1991)
used fractional calculus to generalize the Zener model.
They proposed the fractional (integral) equation of un-
known orders β and µ:
1

τβ
0

0D
−β
t σ(t) + σ(t)− σ0 =

Ge

τβ
0

0D
−µ
t ε(t) + G0[ε(t)− ε0],

(5)
where σ and ε are stress and strain, respectively, and τ0,
Gm, ηm, and Ge are real physical constants. Equation (5)
corresponds to the transfer function

H(s) =
σ̃(s)
ε̃(s)

=
G0 + Ge(sτ0)−µ

1 + (sτ0)−β
, (6)

where the initial values are chosen such that σ0 = G0ε0.
The transfer functions (2), (4), and (6) represent practical
systems with non-integer powers of the Laplace variable.
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Fig. 1. The standard closed-loop system

An interesting study of fractional differential systems ap-
peared in (Viano et al., 1994) using a stochastic frame-
work. The idea of fractional powers is also used for identi-
fication purposes in order to reach more accurate models.
Tsao et al. (1989) and Poinot and Trigeassou (2004),
clarify the identification method when the members of
model set are of fractional order. Two applications of such
identifications can be found in (Vinagre et al., 1998) and
(Chauchois et al., 2003). Fractional differential systems are
also used in control field. Podlubny (1999) and Valério and
Costa (2006) discussed methods of designing PIλDµ con-
trollers, Raynaud and ZergaInoh (2000) studied fractional-
order lead-lag compensators and Oustaloup et al. (1995,
1996) introduced the so-called CRONE controllers.

Systems of commensurate order of derivatives are the
systems that have been described by fractional differen-
tial equations of commensurate order. Such systems lend
themselves well to some algebraic tools (Miller and Ross,
1993; Beyer and Kempfle, 1995). For instance, H(s) as
defined in (2) is a transfer function for a system of com-
mensurate order. More examples of practical fractional
differential systems of commensurate order can be found in
(Beyer and Kempfle, 1995; Vinagre et al., 1998; Chauchois
et al., 2003). The inverse Laplace transform of such sys-
tems involve special functions (for definition and notations
see Miller and Ross, 1993).

It was shown in (Francis and Wonham, 1976) that the
purpose of the internal model is to supply closed-loop
transmission zeros which cancel the unstable poles of the
disturbance and reference signals. But unfortunately the
notion of zero-pole cancellation in fractional case (e.g.,
in dealing with transfer functions like (2), (4), or (6)) is
much more different from the integer case. Note that unlike
the integer case, if A(s) and B(s) are two fractional-order
polynomials (see Definition 1) with the same zeros, then
in general we cannot conclude that A(s)/B(s) is equal to
a constant value, i.e. a zero does not necessarily cancel
the same pole. For example, consider A(s) = s1/2 − 1 and
B(s) = s1/3−1. Both A and B have only one zero at s = 1
(see Proposition 3), but

A(s)
B(s)

=
s1/2 − 1
s1/3 − 1

=
(s1/6 − 1)(s1/3 + s1/6 + 1)

(s1/6 − 1)(s1/6 + 1)

=
s1/3 + s1/6 + 1

s1/6 + 1
6= constant.

This example shows the need for a modified explanation
of the existing internal model principle which is discussed
in this paper. The aim of this brief is not to propose
a controller synthesis algorithm but only to provide the

necessary and sufficient conditions needed for perfect com-
mand tracking and disturbance rejection in fractional case.

The rest of this paper is divided to four sections. Problem
preliminaries are presented in Section 2. Theorems 8 and
9 are the main results of this paper which provide the
necessary and sufficient conditions for perfect command
tracking and disturbance rejection for fractional systems
under consideration. These two theorems are studied in
Section 3. Two illustrative examples are presented in
Section 4 and finally, Section 5 contains the conclusion.

2. PRELIMINARIES

2.1 Problem Prerequisites

Before introducing the main problem, some definitions
and notations are provided. For simplicity, the “fractional
system of commensurate order” will be addressed by
“fractional system” in the rest of this paper.
Definition 1. The function

Q(s) = a1s
q1 + a2s

q2 + . . . + ansqn , (7)
is a fractional-order polynomial if and only if qi ∈ Q+ ∪
{0}, ai ∈ R, i = 1 . . . n, where Q+ and R stand for
the sets of positive rational numbers and real numbers,
respectively.
Definition 2. Consider the fractional-order polynomial

Q(s) = a1s
α1
β1 + a2s

α2
β2 + . . . + ans

αn
βn , (8)

where
ai ∈ R, αi ∈ N ∪ {0}, βi ∈ N,

and αi, βi are relatively prime for i = 1, . . . , n and N is
the set of natural numbers. (If for some i, αi = 0 then
by definition βi = 1.) Let λ be the least common multiple
(lcm) of β1, β2, . . . , βn denoted as λ = lcm{β1, β2, . . . , βn}.
Then

Q(s) = a1s
λ1
λ + a2s

λ2
λ + . . . + ans

λn
λ (9)

= a1(s
1
λ )λ1 + a2(s

1
λ )λ2 + . . . + an(s

1
λ )λn . (10)

Now the fractional degree (fdeg) of Q(s) is defined as
fdeg{Q(s)} = max{λ1, λ2, . . . , λn}.
The domain of definition for (10) is a Riemann surface
with finite number of Riemann sheets (λ sheets here)
where origin is a branch point (of order λ − 1) and the
branch-cut is assumed at R− (LePage, 1961). Note that
the fractional-order polynomial and the fractional degree
as defined above reduce to the conventional concepts of
polynomial and the degree of a polynomial when λ = 1.
The following proposition gives the roots number for a
fractional algebraic equation.
Proposition 3. Let Q(s) be a fractional-order polynomial
with fdeg{Q(s)} = n. Then the equation Q(s) = 0 has
exactly n roots on the Riemann surface.

Proof. Consider
Q(s) = a1(s

1
v )n +a2(s

1
v )n−1 + . . .+an(s

1
v )1 +an+1, (11)

for an appropriate v ∈ N. Assuming w := s
1
v , we have

Q̃(w) = a1w
n + a2w

n−1 + . . . + anw + an+1. (12)
The fundamental theorem of algebra gives n roots for
Q̃(w) = 0, say w1, w2, . . . , wn. Consequently, Q(s) = 0
has n roots at s1 = wv

1 , s2 = wv
2 , . . . , sn = wv

n.
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