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a b s t r a c t 

We present a Newton-based extremum seeking algorithm for maximizing higher derivatives of unknown 

maps in the presence of time delays using deterministic perturbations. Different from previous works 

about extremum seeking for higher derivatives, arbitrarily long input-output delays are allowed. We 

incorporate a predictor feedback with a perturbation-based estimate for the Hessian’s inverse using a dif- 

ferential Riccati equation. As a bonus, the convergence rate of the real-time optimizer can be made user- 

assignable, rather than being dependent on the unknown Hessian of the higher-derivative map. Averaging 

method for arbitrary shaped derivatives under delays is presented. Exponential stability and convergence 

to a small neighbourhood of the unknown extremum point are achieved for locally quadratic derivatives 

by using a backstepping transformation and averaging theory in infinite dimensions. Furthermore, we 

give a brief introduction into stochastic Newton-based Extremum Seeking for constant output delays, 

where we show the differences and similarities with respect to the deterministic case. We also present 

illustrative numerical examples in order to highlight the effectiveness of the proposed predictor-based 

extremum seeking for time-delay compensation applying both deterministic and stochastic perturbations. 

© 2018 European Control Association. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Extremum Seeking (ES) is a non-model based and real-time 

optimization technique for nonlinear equilibrium maps that im- 

pose local optimum, either minimum or maximum. In recent 

years, there have been lots of publications on ES in theory 

[5,7,9,13,21,22,30,31] as well as applications [6,26,27,29,33] . In [8] , 

Newton-based ES (free of delays) was deeply studied. A highlight 

of these works is the approach used to estimate the Hessian’s 

inverse of the nonlinear map, which is generated by means of 

a Riccati filter. This is applied to remove the dependence of the 

algorithm’s convergence rate on the second derivative (Hessian), 

making it user-assignable. The results mentioned above deal only 

with extremum seeking for the map itself. 

However, there are applications where an extremum of the 

map’s higher derivative is sought. In [32] the authors present a re- 

frigeration system where a suitable operating point is located at 
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the maximum negative slope that is subject to change. This point 

of zero curvature corresponds to a minimum of the first deriva- 

tive of the input-output map. Hence, being able to track the min- 

imum of the first derivative in real-time would allow the system 

to operate almost the whole time at the most suitable operating 

condition. 

A Newton-based ES generalization was presented in [19] to 

maximize arbitrary higher derivatives of an unknown map. Using 

periodic perturbations, estimation of the gradient and the Hessian 

of map’s n th derivative were obtained as well as the local stability 

proof for the closed-loop system. However, reference [19] does not 

cope with maps under delays. Time delays are some of the most 

common phenomena that arise in engineering practice and need 

to be handled carefully since even small delays may result in a 

degradation of the system’s behaviour or even lead to instability. 

The first publications that deal with Newton-based ES in the pres- 

ence of constant and known time delays are [23–25] , where only 

the extremum of a map was sought and an not the maximization- 

minimizati-on of its derivatives. 

In this paper, we extend the applicability and usage of the 

predictor-based controller with an averaging-based estimate of the 

Hessian’s inverse proposed in [23–25] to maximize higher deriva- 

tives of a static map despite the presence of time delays [28] . Our 
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generalization for the Newton optimization uses the Hessian es- 

timate of the map’s higher derivative for the purpose of imple- 

menting a predictor that compensates the delay and makes the 

convergence rate independent of the unknown parameters of the 

nonlinear map. The convergence properties of the ES algorithm 

for maximizing arbitrary shaped derivatives by using only mea- 

surements of the map are outlined first in the spirit of finite 

spectrum assignment. After that, we rigorously prove the stabil- 

ity for locally quadratic derivatives via backstepping transformation 

[14] and averaging theory in infinite dimensions [10,16] , consider- 

ing the whole system which is infinite dimensional due to delays. 

As an additional contribution, we give a brief introduction into 

the stochastic generalization of the Newton-based ES algorithm 

with constant output delays, stating the main differences with re- 

spect to the deterministic case in terms of design and analysis. 

There are clear benefits in investigating the use of stochastic per- 

turbations over the deterministic ES architecture, as discussed in 

[18] . For instance, limitations of the deterministic ES scheme in- 

clude the fact that learning using a periodic excitation signal is 

rather simple-minded and rare in probing-based learning and op- 

timization approaches [17] , which may lead to slower converge 

rates. In addition, ES algorithms inspired by bio-mimicry [20] and 

others sensitive to deterministic perturbation signals [3] suggest 

other perturbation techniques using random motion rather then 

periodic ones. 

At the last, numerical simulations show the applicability of the 

proposed algorithms in online maximization-minimization prob- 

lems as well as comparison results for both deterministic and 

stochastic perturbations. 

– Notation and terminology – The 2 − norm of a finite- 

dimensional (ODE) state vector X ( t ) is denoted by single bars, 

| X ( t )|. In contrast, norms of functions (of x ) are denoted by dou- 

ble bars. By default, ‖ · ‖ denotes the spatial L 2 [0, D ] norm, i.e. , 

‖ · ‖ = ‖ · ‖ L 2 [0 ,D ] . Since the PDE state variable u ( x , t ) is a func- 

tion of two arguments, we should emphasize that taking a norm 

in one of the variables makes the norm a function of the other 

variable. For example, the L 2 [0, D ] norm of u ( x , t ) in x ∈ [0, D ] is 

‖ u (t) ‖ = ( 
∫ D 

0 u 2 (x, t) dx ) 1 / 2 . 

The partial derivatives of u ( x , t ) are denoted by u t ( x , t ) and u x ( x , 

t ) or, occasionally, by ∂ t u av ( x , t ) and ∂ x u av ( x , t ) to refer the opera- 

tor for its average signal u av ( x , t ). Consider a generic nonlinear sys- 

tem ˙ x = f (t, x, ε) , where x ∈ R 

n , f ( t , x , ε) is periodic in t with pe- 

riod �, i.e., f (t + �, x, ε) = f (t, x, ε) . Hence, for ε > 0 sufficiently 

small, we can obtain its average model given by ˙ x av = f av ( x av ) , 

with f av ( x av ) = 1 / �
∫ �

0 f (τ, x av , 0) dτ, where x av ( t ) denotes the 

average version of the state x ( t ) [12] . 

As defined in [12] , a vector function f (x, ε) ∈ R 

n is said to be of 

order O(ε) over an interval [ t 1 , t 2 ] if there exist positive constants 

k and ε∗ such that | f ( t , ε)| ≤ k ε, ∀ ε ∈ [0, ε∗] and ∀ t ∈ [ t 1 , t 2 ]. In this 

manuscript we will be referring to O(ε) being an order of magni- 

tude relation, which is valid for ε sufficiently small. Moreover, we 

define any arbitrary initial time as t 0 ≥ 0. 

2. Newton-based extremum seeking of higher derivatives 

under delays 

Scalar ES considers applications in which one wants to max- 

imize (or minimize) the output y ∈ R of an unknown nonlinear 

static map h ( θ ) by varying the input θ ∈ R in real time . But like in 

many technical applications we have to consider that the output 

may be time-delayed [2] , and hence, we additionally assume that 

there is a constant and known delay D ≥ 0 such that the output is 

expressed by 

y (t) = h (θ (t − D )) . (1) 

In this paper, we assume that our system is output-delayed. 

Since any input delay can be moved to the output of a static 

map, the results from this paper can be directly extended to the 

input-delay case. Also the case when input delays D in and output 

D out delays occur simultaneously can be handled by assuming that 

the total delay is D = D in + D out , with D in , D out ≥ 0. Furthermore, 

we only consider measurements without noise and/or disturbances 

that is not an objective of this paper and should be handled 

separately. 

Without loss of generality, let us consider the maximization of 

n th derivative of the output in the presence of time delay using 

Newton-based ES, where the maximizing value of θ is denoted by 

θ ∗. We state our optimization problem as follows: 

max 
θ∈ R 

h 

(n ) (θ (t − D )) , (2) 

with nonlinear map h ( · ) satisfying the next assumption. 

Assumption 1. Let h ( n ) ( · ) be the n th derivative of a smooth func- 

tion h ( · ): R → R . Now let us define 

�max = { θ | h 

(n +1) (θ ) = 0 , h 

(n +2) (θ ) < 0 } (3) 

to be a collection of maxima where h ( n ) is locally concave. Now 

assume that ∃ θ ∗ ∈ �max and �max 
 = ∅ . 
In Fig. 1 , we illustrate the proposed scalar version of the 

Newton-based ES for maximization of higher derivatives based on 

predictor feedback for delay compensation. The design parame- 

ters are k , k R , a , ω, c > 0 as presented in Fig. 1 . According to [19] , 

we switch from maximization to minimization problem by setting 

sgn (γ0 ) = sgn (h (n +2) (θ ∗)) with γ 0 as initial value of γ . 

2.1. System and signals 

Let ˆ θ be the estimate of the maximizer and 

˜ θ (t) = 

ˆ θ (t) − θ ∗ (4) 

be the estimation error. From the block diagram in Fig. 1 , the error 

dynamics can be written as 

˙ ˜ θ (t) = 

˙ ˆ θ (t) = U(t) . (5) 

Moreover, we have 

˙ γ = k R γ (1 − γ ̂ h 

(n +2) ) , (6) 

where (6) is a differential Riccati equation. Eq. (6) will be used to 

generate an estimate of the Hessian’s inverse [8] according to the 

following error transformation 

˜ γ = γ − 1 

h 

(n +2) (θ ∗) ︸ ︷︷ ︸ 
H −1 

. (7) 

Rearranging the equations given in [19] for the block diagram 

in Fig. 1 including delays, we can write: 

θ = 

ˆ θ + a sin (ωt) , (8) 

ϒ j = C j sin 

(
jωt + 

π

4 

(
1 + (−1) j 

))
, (9) 

C j = 

2 

j j! 

a j 
(−1) F , (10) 

F = 

j −
∣∣∣∣sin 

(
jπ

2 

)∣∣∣∣
2 

. (11) 

We have defined the additive dither signal as 

S(t) = a sin (ωt) (12) 
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