

Journal of Molecular Catalysis B: Enzymatic 47 (2007) 37–42

www.elsevier.com/locate/molcatb

Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant *Saccharomyces cerevisiae*

Yong-Joo Oh^a, Tae-Hee Lee^a, Sung-Haeng Lee^a, Eun-Joong Oh^a, Yeon-Woo Ryu^b, Myoung-Dong Kim^{c,*}, Jin-Ho Seo^{a,**}

^a Department of Agricultural Biotechnology and Center for Agricultural Biomaterials,
 Seoul National University, Seoul 151-921, Republic of Korea
^b Department of Molecular Science and Technology, Ajou University,
 Suwon 442-749, Republic of Korea
^c School of Bioscience and Biotechnology and Institute of Bioscience and Biotechnology,
 Kangwon National University, Chuncheon 200-701, Republic of Korea

Received 29 December 2006; received in revised form 29 March 2007; accepted 29 March 2007 Available online 5 April 2007

Abstract

To increase the metabolic flux toward the NADPH-generating pentose phosphate pathway in a recombinant *Saccharomyces cerevisiae* strain that harbors the xylose reductase gene from *Pichia stipitis*, expression of phosphoglucose isomerase (PGI) encoded by the *PGII* gene was modulated by a promoter replacement using the *ADHI* promoter. Although the *ADHI* promoter down-regulated PGI expression in glucose-limited condition, the decline of PGI activity did not exert a profound influence on xylitol production in a series of glucose-limited fed-batch cultivations. However, simultaneous enforcement of glucose 6-phosphate dehydrogenase (G6PDH) activity and attenuation of phosphoglucose isomerase activity worked in a cooperative manner to increase xylitol production and to reduce utilization of cosubstrate required for xylitol production in a glucose-limited fed-batch cultivation of the PGI mutant strain with an enhanced G6PDH activity. An 1.9-fold increase in specific xylitol productivity of 0.34 ± 0.03 g/g cells h was achieved compared with the control strain containing xylose reductase only.

Keywords: Glucose 6-phosphate dehydrogenase; NADPH; Phosphoglucose isomerase; Saccharomyces cerevisiae; Xylitol; Xylose reductase

1. Introduction

Microbial catalysts such as xylose-utilizing yeasts and recombinant *Saccharomyces cerevisiae* can convert xylose to xylitol, a five-carbon sugar alcohol [1–3]. Expression of the xylose reductase gene from *Pichia stipitis* in *S. cerevisiae*, one of the most widely used eukaryotic workhorses in biotechnology [3–7], conferred the ability to produce xylitol from xylose with almost theoretical yield [2,3]. Since xylose reductase of *P. stipitis* requires NAD(P)H as cofactor for its enzymatic action,

cosubstrates such as glucose and ethanol are needed to regenerate cofactors, which are oxidized during the conversion of xylose to xylitol [8]. Accumulation of glucose, a preferential but repressible cosubstrate, can override xylose transport and hence, a controlled feeding strategy for glucose has been generally used for a fed-batch operation [3,9,10].

In our previous study [10], a reduction in the NADPH pool by overexpression of bacterial transhydrogenase decreased xylitol productivity in a recombinant *S. cerevisiae* strain, which was in good accordance with the fact that xylose reductase from *P. stipitis* prefers NADPH to NADH as a cofactor [11]. While several approaches have been successfully attempted to engineer the cofactor metabolism in *Escherichia coli* [12,13], there is an increased complexity in balancing the formation and consumption of cofactors in *S. cerevisiae* as this yeast does not have cytoplasmic transhydrogenase able to convert NADH directly

^{*} Corresponding author. Tel.: +82 33 250 6458; fax: +82 33 241 0508.

^{**} Corresponding author. Tel.: +82 2 880 4855; fax: +82 2 873 5095. *E-mail addresses:* mdkim@kangwon.ac.kr (M.-D. Kim), jhseo94@snu.ac.kr (J.-H. Seo).

into NADPH. Moreover, the metabolism of these cofactors is compartmentalized.

The oxidative pentose phosphate pathway (PPP) is thought to be a major source of NADPH biosynthesis in yeast [14]. The metabolic flux through this pathway has been reported to increase at high NADPH demand and to decrease when the need for NADPH production is reduced [15]. NADPH is produced at the two steps in PPP including the conversion of glucose 6-phosphate to 6-phosphoglucose-δ-lactone, catalyzed by glucose 6-phosphate dehydrogenase (G6PDH) and the conversion of 6-phosphogluconate to ribulose 5-phosphate catalyzed by 6-phosphogluconate dehydrogenase.

A simple metabolic engineering approach can be considered to force all carbon fluxes toward the oxidative PPP by blocking the entry of a carbon into glycolysis. This goal might be achieved by disruption of the gene PGI1. Phosphoglucose isomerase (PGI; E.C. 5.3.1.9) encoded by the PGI1 gene in S. cerevisiae is a key enzyme in glycolysis that functions at the junction of the gluconeogenesis and catabolism. It catalyzes the reversible isomerization of D-glucose 6-phosphate and Dfructose 6-phosphate and thus its activity is tightly controlled at the pivotal point of the two metabolic pathways, glycolysis and PPP. However, disruption of the PGI1 gene to force the carbon flux through PPP in S. cerevisiae is reported as lethal [16,17]. Accordingly, it is highly desirable to manipulate the expression level of PGI appropriately. It could be assumed that reduced PGI activity might lead to accumulation of glucose 6-phosphate, a substrate for G6PDH that produces NADPH.

Alcohol dehydrogenase I encoded by the *ADH1* gene in yeast reduces acetaldehyde to ethanol during glucose fermentation. Although originally thought to be constitutive, *ADH1* transcription is repressed when cells are grown on a nonfermentable carbon source such as glycerol and ethanol [18]. On glucose, activity of the *ADH1* promoter decreases during the late exponential phase where glucose is almost exhausted [19].

This study was undertaken in order to increase the metabolic flux through PPP, to accelerate NADPH regeneration and thus to enhance the NADPH-dependent xylitol production in the recombinant *S. cerevisiae* strain. A 'push and pull' strategy to increase NADPH regeneration was evaluated, i.e., G6PDH activity was fortified by overexpression of the *ZWF1* gene on plasmid and expression of the genomic *PGI1* gene was modulated by the *ADH1* promoter. Performances of the engineered strains for xylitol production were compared in a series of glucose-limited fed-batch cultivations.

Table 1 Recombinant *S. cerevisiae* strains used in this study

2. Experimental

2.1. Strains and DNA manipulations

E. coli TOP10 (Invitrogen, Carlsbad, CA, USA) was used for plasmid preparation. *S. cerevisiae* BJ3505/δXR harboring multiple copies of the *P. stipitis* xylose reductase gene [9] was used as host strain for promoter replacement and transformation of plasmid pKZWF1 (2 μm, *URA3*, 8.1 kb, lab stock) which constitutively overexpresses the *ZWF1* gene [20]. Recombinant *S. cerevisiae* strains used in this study were listed in Table 1. Empty vectors p426GPD (ATCC 87361) and pMK103 (2 μm, *TRP1*, 8.0 kb, lab stock) were used as control.

The truncated structural PGI1 gene was obtained by the polymerase chain reaction (PCR) using the genomic DNA of S. cerevisiae BJ3505 (ATCC 208281) as template and two primers YJ1 [5'-CGGGATCCCTAAAAATGTCCAATAACT-CATTCA-3'] and YJ2 [5'-CCGCTCGAGGTCAACAACCTT-CAAGGTTT-3']. After digestion with BamHI and XhoI, the expected-size PCR product was cloned into plasmid pMK103 that contains the ADH1 promoter and CYC1 terminator upand downstream of the cloning site, respectively, to construct pYJ103. Plasmid pYJ103 was linearized with SalI restriction enzyme before transformation into the yeast. Control strains were also constructed by transformation with an empty vector pMK103 or p426GPD. Plasmid pMK103 was linearized by BspMI of which recognition site is located in the TRP1 open reading frame. Promoter replacement was confirmed by diagnostic PCR using primers DIAG5 [5'-ATCTTAAAAAGGTCC-TTTCTTCATAA-3'] and DIAG3 [5'-AAATATAAATAACGT-TCTTAATACTAACATAACTA-3']. All recombinant DNA techniques were based on the methods described by Sambrook and Russell [21]. Schematic representation of the promoter replacement is shown in Fig. 1.

2.2. Growth conditions

LB medium (1% NaCl, 1% tryptone, and 0.5% yeast extract) was used for *E. coli* cultivation. Synthetic complete (SC) plates without appropriate nutrients were used for selection of the yeast transformants. Fed-batch cultures were carried out in a bench-top fermentor (Bioengineering AG, Wald, Switzerland) with 1.0-l working volume. Seed cultures were grown overnight in a selective SC medium. YEPD medium (1% yeast extract, 2% peptone, and 2% glucose) supplemented with 10% xylose was used for fed-batch cultures. After the depletion of glucose added initially, glucose solution (60%) was fed at a rate of 0.6 g

Strain	Genotype	PGI activity ^a (unit/mg)	Ref.
BJ3505/δXR	MATα his3 lys2-208 trp1 ura3 pep4::HIS3 Ty-δ::P _{GPD1} -XYL1-T _{GPD1} -neo ^r	0.40 ± 0.02	[9]
YJO-4	BJ3505/δXR, <i>trp1::TRP1</i> , p426GPD	0.40 ± 0.02	This study
YJO-11	BJ3505/8XR, <i>PGI1</i> ::P _{ADH1} -PGI1-T _{CYC1} -TRP1, p426GPD	0.12 ± 0.02	This study
YDK-5	BJ3505/8XR, <i>trp1</i> :: <i>TRP1</i> , pKZWF1	0.42 ± 0.02	This study
YJO-12	BJ3505/8XR, PGI1::P _{ADH1} -PGI1-T _{CYC1} -TRP1, pKZWF1	0.12 ± 0.02	This study

^a For enzyme assay, cells growing exponentially in YEPD were shifted to yeast extract–peptone medium supplemented with 0.05% glucose for 1 h.

Download English Version:

https://daneshyari.com/en/article/71137

Download Persian Version:

https://daneshyari.com/article/71137

<u>Daneshyari.com</u>