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a b s t r a c t 

This paper presents a mathematical convergence analysis of a Fock states feedback stabilization scheme 

via single-photon corrections. This measurement-based feedback has been developed and experimentally 

tested in 2012 by the cavity quantum electrodynamics group of the Laboratoire Kastler Brossel. Here, we 

consider an infinite-dimensional Markov model corresponding to a realistic experimental set-up where 

imperfect measurements and feedback delays are taken into account. In this realistic context, we show 

that any goal Fock state can be stabilized by a Lyapunov-based feedback for any initial quantum state 

belonging to the dense subset of finite rank density operators with support in a finite photon-number 

subspace. Closed-loop simulations illustrate the performance of the feedback law. 

© 2017 European Control Association. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

A photon-number states (Fock states) feedback stabilization 

scheme via single-photon corrections was described and exper- 

imentally tested in [11] by the cavity quantum electrodynamics 

group of the Laboratoire Kastler Brossel (LKB). 1 Such control 

problem is relevant for quantum information applications [4,7] . 

The quantum state ρ corresponds to the density operator of 

a microwave field stored inside a super-conducting cavity and 

described as a quantum harmonic oscillator. At each sample step 

k ∈ N , a probe atom is launched inside the cavity. The measure- 

ment outcome y k detected by a sensor is the energy-state of 

this probe atom after its interaction with the microwave field. 
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Each probe atom is considered as a two-level system: either it 

is detected in the ground energy state | g 〉 , or the excited energy 

state | e 〉 . Consequently, the measurement outcomes correspond to 

a discrete-valued output y k with only 2 distinct possibilities: g or 

e . Similarly, the control inputs u k are also discrete-valued with 3 

distinct possibilities: −1 , 0 , +1 . The open-loop value u k = 0 corre- 

sponds to a dispersive atom/field interaction: it achieves in fact a 

Quantum Non-Demolition (QND) measurement of Fock states [2] . 

The two other values u k = ±1 correspond to resonant atom/field 

interactions where the probe atom and the field exchange energy 

quanta: these values achieve single-photon corrections. 

Up to now, despite the successful experimental implementation 

achieved in [11] , there is no mathematical convergence proof: 

this is due to the fact that the control values are discrete (only 

3 different values) and the system state is continuous (density 

operator). This paper establishes a first result assuming that the 

initial condition is known and has a support of finite photon- 

number, which may open the way to more complete results where 

it is unknown and its support involves an infinite number of 

photons and specific Banach spaces of trace-class operators. The 

main interest for future applications relies on the fact that the 

open-loop measurement process is QND: quantum non-demolition 

measurements are widely used in feedback schemes underlying 

error corrections (see e.g. [6] ). 
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This paper shows that, by adding an arbitrarily small term to 

the Lyapunov function used in [11] , one ensures almost sure global 

stabilization of any goal Fock state for the closed-loop quantum 

system (see Theorem 2 in Section 3.2 ). This is achieved by relying 

on an infinite-dimensional Markov model of the experimental 

set-up of the controlled microwave super-conducting cavity re- 

ported in [11] . Such model takes into account the back-action 

of the measurement outcome y k on the quantum state ρk +1 as 

well as measurement imperfections and feedback delays, since 

these experimental issues were considered in the feedback law 

implemented in [11] . The relevance of the global stabilization 

results of arbitrary Fock states here established lies in the prepa- 

ration of nonclassical field states that are robust with respect to 

environmental decoherence, which in turn is an important issue 

in quantum information applications [11] . Furthermore, in com- 

parison to the Lyapunov function used in [11] , the modifications 

proposed in this paper may lead to improvements in the speed 

of convergence towards the goal Fock state (see the simulation 

results in Section 4 and the conclusions in Section 6 ). 

Loosely speaking, in [11] , the control value u k at each sample 

step k was chosen so as to minimize the conditional expectation 

of the Lyapunov function V (ρk ) = Tr 
(
d(N) ̂  ρk + τ

)
, where N is the 

photon-number operator, d(n ) = (n − n ) 2 , ρ = | n 〉〈 n | is the goal 

Fock state, τ is the control delay, and 

̂ ρk + τ is a τ step(s) ahead 

estimate of the quantum state ρk . Bear in mind that, due to 

the delay τ , the control u k computed at the sample step k will 

only be applied at k + τ, thus justifying the role of the state 

estimator. However, in closed-loop, the difference between such V 

and its conditional expectation is not strictly positive: V does not 

become a strict Lyapunov function in closed-loop and additional 

arguments have to be considered to prove convergence. These 

additional arguments are related to Lasalle invariance. They are 

well established in a smooth context where the control u is a 

smooth function of the state ρ . This cannot be the case here 

since u is a discrete-valued control. In order to overcome such 

technical difficulties, we propose, similarly to [1] , to add the 

arbitrarily small term −ε
∑ ∞ 

n =0 (〈 n | ρk | n 〉 ) 2 to V ( ρk ), where ε > 0. 

This slightly modified control-Lyapunov function becomes then a 

strict-Lyapunov function in closed-loop that simplifies notably the 

convergence analysis. 

Moreover, contrarily to [1] , the developed convergence analysis 

is done in the infinite-dimensional setting in the following sense: 

we show that, for any initial density operator ρ0 with a finite 

photon-number support ( ρ0 | n 〉 = 0 for n large enough), the closed- 

loop trajectory k �→ ρk also remains with a finite photon-number 

support with a uniform bound on the maximum photon-number. 

This almost finite-dimensional behavior simplifies the convergence 

analysis despite the fact that such condition on ρ0 is met on a 

dense subset of density operators (Hilbert-Schmidt topology on 

the Banach space of Hilbert-Schmidt self-adjoint operators). 

The authors have provided in [9] a first mathematical conver- 

gence analysis of the Fock states feedback stabilization scheme 

described above under an ideal set-up, that is, by disregarding 

detection errors and control delays. This paper extends such 

analysis to more realistic experimental set-ups that are subject 

to measurement imperfections and feedbacks delays, as the ones 

reported in [11] . Such generalization is not trivial. 

The paper is organized as follows. Section 2 presents a real- 

istic Markov model of the experimental set-up of the controlled 

microwave super-conducting cavity reported in [11] , and precisely 

formulates the Fock states stabilization problem here treated (see 

Definition 1 ). Section 3 establishes the proposed solution to the 

control problem in two distinct parts. Firstly, Section 3.1 considers 

the particular case where the initial condition ρ0 is a diagonal 

density operator (see Theorem 1 ). Only the main ideas of the 

convergence proof are outlined. The technical details are given in 

Section 5 . Although such diagonal case is somewhat artificial and 

does not correspond to a practical physical context, it considerably 

simplifies the computations and the reasonings involved in general 

non-diagonal situations. The main result of the paper is presented 

in Section 3.2 : the general solution is straightforwardly obtained 

from the diagonal case ( Theorem 1 ) for ρ0 belonging to a dense 

subset (see Theorem 2 ). The simulation results are exhibited in 

Section 4 . The proof of some intermediate results and computa- 

tions required in Sections 3 and 5 are presented in Appendix B –

Appendix G . Finally, the concluding remarks are given in Section 6 . 

2. Realistic Markov model 

The Fock states feedback stabilization scheme via single-photon 

corrections experimentally tested in [11] considered measurement 

imperfections and feedback delays. In order to take into account in 

the global stabilization results here established such experimental 

issues, as well as the back-action of the measurement outcome y k 
on the quantum state ρk +1 , one requires a realistic Markov model 

of the experimental set-up of the controlled microwave super- 

conducting cavity reported in [11] . This is described in the se- 

quel. Denote by H the separable complex Hilbert space L 2 (C ) with 

orthonormal basis {| n 〉 , n ∈ N } of Fock states (photon-number). 

Hence, H = { ∑ 

n ∈ N ψ n | n 〉 , (ψ 0 , ψ 1 , . . . ) ∈ l 2 (C ) } . Let Tr ( ·) ∈ C de- 

note the (linear) trace function on the set of trace-class operators 

on H, and let D be the set of all density operators on H, that 

is, the set of trace-class, self-adjoint, non-negative operators on H
with unit trace (see e.g. [10] ). The sample step, corresponding to a 

sampling period around 100 μs, is indexed by k ∈ N = { 0 , 1 , 2 , . . . } , 
u k ∈ {−1 , 0 , 1 } is the control, ρk ∈ D the quantum state, y k ∈ { g , e } 

the measurement outcome, τ ∈ N is the control delay and 

χk = (ρk , βk ) with βk = (βk, 1 , . . . , βk,τ ) = (u k −1 , . . . , u k −τ ) (1) 

is the extended state taking into account the delay of τ sample 

step(s) in the control u k . When τ = 0 , one has χk = ρk , that is, βk 

is empty. The Markov model of the controlled microwave super- 

conducting cavity used in [11] admits the following structure. The 

extended state χk +1 = (ρk +1 , βk +1 ) at sample step k + 1 is given 

as: 

ρk +1 = 

{
ρg 

k +1 
, when y k = g with probability p g,k , 

ρe 
k +1 

, when y k = e with probability p e,k , 

βk +1 = (βk +1 , 1 , βk +1 , 2 , . . . , βk +1 ,τ ) = (u k , βk, 1 , . . . , βk,τ−1 ) , (2) 

where 

ρg 

k +1 
= 

(1 − δ) M g (u k −τ ) ρk M 

† 
g (u k −τ ) + δM e (u k −τ ) ρk M 

† 
e (u k −τ ) 

Tr 
(
(1 − δ) M g (u k −τ ) ρk M 

† 
g (u k −τ ) + δM e (u k −τ ) ρk M 

† 
e (u k −τ ) 

), 

ρe 
k +1 = 

δM g (u k −τ ) ρk M 

† 
g (u k −τ ) + (1 − δ) M e (u k −τ ) ρk M 

† 
e (u k −τ ) 

Tr 
(
δM g (u k −τ ) ρk M 

† 
g (u k −τ ) + (1 − δ) M e (u k −τ ) ρk M 

† 
e (u k −τ ) 

) . 

(3) 

The notations are as follows: 

• δ ∈ [0 , 1 2 [ is the detection error rate; 

• the measurements outcomes y k = g and y k = e occur with the 

respective probabilities 2 

p g,k = Tr 

(
(1 −δ) M g (u k −τ ) ρk M 

† 
g (u k −τ )+ δM e (u k −τ ) ρk M 

† 
e (u k −τ ) 

)
, 

p e,k = Tr 

(
δM g (u k −τ ) ρk M 

† 
g (u k −τ )+(1 −δ) M e (u k −τ ) ρk M 

† 
e (u k −τ ) 

)
= 1 − p g,k ; (4) 

2 As usual in quantum physics, it is here assumed that the measurement outcome 

y k = y cannot occur when p y,k = 0 , for y = g, e . 
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