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Abstract: In this paper, we propose a robust Kalman filter and smoother for the errors-in-
variables (EIV) state space model subject to observation noise with outliers. We introduce the
EIV problem with outliers and then we present the minimum covariance determinant (MCD)
estimator which is highly robust estimator to detect outliers. As a result, a new statistical test
to check the existence of outliers which is based on the Kalman filter and smoother has been
formulated. Since the MCD is a combinatorial optimization problem the randomized algorithm
has been proposed in order to achieve the optimal estimate. However, the uniform sampling
method has a high computational cost and may lead to biased estimate, therefore we apply the
sub-sampling method. A Monte Carlo simulation result shows the efficiency of the proposed

algorithm.
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1. INTRODUCTION

A basic numerical routine for the classical EIV Kalman
filter Diversi et al. [2005], Markovsky et al. [2005] and
smoother computes the conditional expectation which is
a least squares (LS) estimate. Since the LS method is
rather sensitive to outliers (non Gaussian disturbances),
so is the Kalman filter and smoother. Moreover, it is well
known in real applications that most practical data contain
outliers with a low probability, so that a standard Gaussian
assumption for observation noises might fail. Following
Rousseew Rousseeuw [1984], we define the outliers to be
the observations which deviate from the pattern set of
the majority of the data. There are many reasons for
the occurrence of outliers, e.g. misplaces decimal points,
recording or transmission errors, expectational phenomena
such as earthquakes or strikes, or members of different
population slipping in the sample etc.

Several algorithms have been proposed to deal with out-
liers in the output data Bai [2003], Proietti [2003], Masere-
liez et al. [1977], Meinhold et al. [1989], Fruhwirth [1997],
however, there are some cases where the input data are
observed quantities subject to random variability. Thus,
there is no reason why gross errors would only occur in
the response data. In a certain sense it is more likely
to have outliers in the observed input data. As a tech-
nique for coping with this problem, Rousseeuw Rousseeuw
[1984] suggested the MCD estimator and Rousseeuw et al.
[2004,7] presented the fast MCD algorithm to compute the
multivariate linear regression model. Another approach
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for the MCD estimator that is based on the covariance
matrix of the residuals instead of the multivariate location
and scatter has been proposed by Agullo et al. [2007].
Furthermore, the influence function and the efficiency of
the MCD scatter estimator has been studied in Croux et al.
[1999]. The MCD problem for the time series models, e.g.
AR and ARMA models has discussed in Maronna et al.
[2006]. However, for the EIV state space model where the
outliers acts in the observed input data to the best of our
knowledge, there is no paper that has been published in
this area.

In this paper, we consider a filtering and smoothing
problem in the presence of observation outliers with the aid
of the MCD procedure. It is well known that the MCD is a
highly robust estimator and its objective is to find a subset
from the observation data with cardinality greater than
half of the observed data and whose covariance matrix
has minimum determinant. The random search algorithm
Bai [2003] has been proposed to solve the MCD problem.
However, the high computational complexity makes the
MCD estimator impractical and may lead to bias estimate
for the EIV state space model. Hence, we propose the
sub-sampling method Heagerty [2000] which keeps the
structure of the original data, decrease the computation
time and is less sensitive to outliers. Another feature of the
proposed algorithm is that the algorithm can be applied
even if there is no outlier in the observed data. A minor
contribution of the paper is that we derive the Kalman
smoother for the EIV state space model which is required
for the new statistics.
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This note is organized as follows. Section 2, gives the
errors-in-variables problem in the presence of outliers, and
introduces the MCD estimator for the EIV state space
model. In section 3, we proposed the randomized algorithm
as a method to solve the MCD problem and discuss the
disadvantages of the algorithm. Section 4, is dedicated to
the Kalman filter and smoother with outliers and propose
the sub-sampling method. The Monte Carlo simulation
is reported in section 5 and Appendix A is devoted to
Kalman filter and smoother without outliers and proof of
the proposition.

2. ERRORS-IN-VARIABLES MODEL

As depicted in Fig. 1, consider the errors-in-variables state
space model described by
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where z(t) € R™, 4(t) € R™ and g(t) € RP are
unknown state, true input and output vectors respectively.
Furthermore, w(t) is the white Gaussian noise acting on
the state whose mean is zero and has a covariance X,,. It
should be noted that the output noise has been excluded

here for the seek of simplicity, however it can be added
and our technique can be easily generalized. The measured
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Fig. 1. Errors-in-variables model

input-output signals u(t) and y(t) are modelled as

u(t) = a(t) +a(t), (2)
y(t) = 9(t) +5(t), 3)

where 4(t) € R™ and §(t) € R? are non-Gaussian white
noises with zero mean and finite positive definite covari-
ance matrices ¥ and ¥y, respectively;
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where 6(t,7) denotes the Kronecker delta function. We will
assume in the sequel, that @(t) and §(t) are uncorrelated
with w(t). Furthermore, the input and output noises (t)

and g(t) contain outliers with a low probability, therefore
we write

o(t, 1), (4)

a(t) = (Im — o(t))a" (t) + o(t)a° (),

y(t) = (I, =~ ()" (t) +v(£)g° (1),
where I, is the s x s identity matrix for s = m or
s = p, ¥(t) = diag{tr} = diag{tpr,-- ¢} and
P, = 0 or ¢y, = 1 for all ¢ and where ¥(¢t) = ~(¢)

or Y(t) = ¢(t). Moreover, Prob{¢;; = 1} is small, i.e.
the minority of the observed data are outliers. The noises
{a™(t),u°(t), g™ (t),y°(t)} are Gaussian white noises with
a*(t) € N(0,23),  u’(t) € N(0,X3), ()
g'(t) e N(O,XF),  °(t) € N(0, ), (6)
where {X7,35,3%, 52} are positive definite covariance

matrices. Furthermore 35 (i,1) and ¥Z(i,i) are much

larger than ¥7(i,i) and X7 (4,4) respectively. Then, the
problem of interest is to ﬁnd a robust Kalman ﬁlter and
smoother estimate 4*(t),§*(¢) and Z(t) for the input-
output data 4(t),§(t) and the state vector z(t) given
that the observed input-output data are contaminated
with outliers. The fact that we account for the possibility
that the input signal is not exactly known and it may
contain outliers, makes the problem difficult, and is often
referred to as an outlier-errors-in-variables (OEIV) prob-
lem Maronna et al. [2006].

2.1 Minimum covariance determinant for the EIV models

The MCD technique has been introduced by Rousseeuw
[1984] to detect the outliers for the high dimen-
sional data set. In order to define the MCD for
EIV state space model, consider a data set Q(N) =

{w(i)z [Zgﬂ :¢:1,--.,N}, and let S = {S C

{1,--- N} : #S = M} ! be the collection of all sub-
sets with cardinality M from the set {1,---, N}, where
[N/2] < M < N 2.1f the variable M equals to N, then
we do not have any outlier. Moreover, the smallest possible
value for M is %, because if more than half of the data
were outliers, it would be unclear which data were from
the main distribution and which were outliers. For any

S €S, let QS) = {w(i) - {“@} e S}, and define

y(0)
the covariance as cov(S)

= a7 DicsW(@)—Ts)(w(i)—Ts)T
u(i)
y(i

where T = ﬁ ies )] and where (i) and g(i) are

the estimates based on the observations in Q(S) to be
obtained in section 4. The MCD estimator consist of two
steps; the first step is to

J(S) = Minimize det(cov(S5)), (7
i.e. the MCD searches for a subset S € S of size M whose
covariance matrix has the smallest determinant. It is clear
that the variables in the objective function (7) are the
subset S and the estimates g(7) and @(7). The second step
is to detect outliers by using the squared Mahalanobis
distance d(i)? = (w(i) — Ts)Tcov(S) ™ (w(i) — Ts), where
Ts and cov(S), are computed by using the observed data
in (5) only. Furthermore consider the null hypothesis

Ho(t) :
against the alternative hypothesis
Hl( ) .

Since cov(S)~Y2(w(i) — Ts) has a standard Gaussian
distribution function, therefore the squared Mahalanobis
distance d(t)? has X2 distribution and a decision rule §(t)
can be found as

sy | Ho® O < e
Hi(t) id(t) > /X

where p+m is the degrees of freedom of the x? distribution.
It is clear that if the observation w(t) does not belong to
the best subset S, then the Mahalanobis distance is greater

w(t) is not an outlier,

w(t) is an outlier.

1 4 .= cardinality of the subset S.
2 [] is the greatest integer number.
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