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a b s t r a c t 

In this paper, we study the consensus problem from a general control theoretical perspective. For that we 

identify three entities: the multiagents network that constitutes the control plant, consensus as a control 

objective, and the consensus algorithm as a feedback controller for the network. Consensus is redefined 

through the idea of organization (a linear transformation) to define an error vector that resumes the 

characteristics of the network. With this formulation, we can translate the general consensus problem 

into a stability problem and, from there, use classical Control Theory to analyze the case of agents with 

arbitrary linear time invariant dynamics (and not only integrator dynamics) and Laplacian algorithms. The 

paper is complemented with numeric examples to illustrate the proposed analysis methodology. 

© 2017 European Control Association. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

The topic of consensus in multi agents systems had gain much 

attention in the control society during the last decade. The analogy 

of a swarm of birds is a useful way to explain the main character- 

istic of the problem: a group of similar systems (or agents ) agree 

to coordinate some important variables through a given informa- 

tion exchange strategy (or algorithm ). The publication of books like 

[14,18,19,28] shows that the topic has already reached an advanced 

state. However, it remains a popular area of research as shown in 

the review papers [5,15] where more than three hundred refer- 

ences are quoted. Most of the work in the area is based on Graph 

Theoretical approaches to the problem and single or double inte- 

grators dynamics. Examples of this are the already quoted publica- 

tion, and an increasing number of papers such as [1,9–11,17] . 

Consensus can be understood as a control objective in the same 

way as stability or robustness in classical control. That is, the defi- 

nition of consensus is independent of the agent’s dynamics or the 

methodology that the agents follow to reach this objective. It is 

however not an exception in the field, e.g. [ 8,15,19 , etc.], to find 

definitions not only in terms of the output signals but also in terms 

of specific dynamics (usually integrators) and specific consensus 

algorithms (usually Laplacian algorithms). That is, not as a con- 

trol objective used for synthesis of controllers, but as a property of 

particular control plants with particular controllers. Although some 

publications, e.g. [12,13,21–23,26,27,29] , extend the graph theoreti- 
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cal approaches to systems with more general linear dynamics, the 

particular cases with which these deal, makes it difficult to extend 

the results to more general cases. 

Furthermore, consensus can be intuitively compared with the 

equilibrium point of a system that resumes the characteristics of 

the whole network. However, explicitly reducing consensus to a 

stability problem, is not typically addressed in the existing works. 

Nevertheless, in some recent papers, e.g. [3,20,24,25,29] , consensus 

is studied as the stability of a differences vector between the out- 

puts of one of the agents and the rest of them. 

In this paper, this idea is further exploited to formally trans- 

late the consensus problem into a classical stability one through 

the introduction of an analysis tool that we named organization . 

The idea was partially introduced by the author in a conference 

publication [16] , but here it is enriched to obtain analytical condi- 

tions to verify if agents with arbitrary linear time-invariant dynam- 

ics can reach consensus over all of its outputs. This is done by ex- 

tending the notion of weighted graphs to include matrix weights, 

and by identifying three different entities: A multiagents control 

plant, consensus as a control objective, and a consensus algorithm 

as a distributed feedback controller. From here, the problem can 

be studied by means of standard control theory allowing to drop 

restrictive assumptions on the dynamics of the agents. 

After this introduction, Section 2 presents a summary of Graph 

Theoretical concepts that are needed to characterize the consen- 

sus problem. The following section formally defines the problem, 

while Section 4 analyzes consensus in three different cases. First 

the most studied case of integrator systems with coupled dynam- 

ics, then with arbitrary linear dynamics, and finally for networks 

where all agents have identical dynamical behavior. The paper is 
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then complemented with numeric examples that show some of the 

main characteristics of the proposed approach. 

The identity and zero matrices are respectively denoted I and 

0 . A matrix composed by N identity matrices stacked in a column 

is denoted 1 = col { I } N 
i =1 

. If necessary, the dimensions of these ma- 

trices will be denoted as an index. For example, I q is the identity 

matrix in R 

q ×q and 0 m × n the zero matrix in R 

m ×n . 

2. Graph theory 

Most of the consensus works use intensely graph theoretical 

methods for description and analysis of networks. In this section, 

basic notions of the subject are presented based on the quoted 

works and specialized books as [4,6,7] . 

An undirected graph is a tuple G = (V , E ) , where V = 

{ 1 , 2 , . . . N} is a set of N nodes or vertices , and E ⊆ { (i, j) ∈ V × V } 
is a set of edges . 

We interpret that the edge denoted (i, j) ∈ E is the same as the 

edge ( j, i ) ∈ E . This is a slightly abuse of notation as we represent 

an unordered edge by an ordered pair ( i , j ). With this notation we 

mean that an unordered edge between nodes i and j of an undi- 

rected graph can be equivalently specified either by the pair ( i , j ) 

or the pair ( j , i ). Which is not the same as the graph having two 

different ordered edges. 

In the context of this paper, the nodes correspond to agents , and 

the existence of an edge means that two agents interact with each 

other either through input and output signals, or by a ”hierarchi- 

cal relationship” (see Section 3.2 ). An arbitrary indexation of the 

edges, which is independent of the labeling of the nodes, can be 

introduced so that e k = (i k , j k ) ∈ E = { e 1 , e 2 , . . . , e | E | } . In this case, 

i k ∈ V and j k ∈ V represent the two nodes associated with the k th 

edge, e k ∈ E . 

We focus on loopless graphs, i.e. graphs where (i, i ) / ∈ E , ∀ i ∈ V . 

A path is an ordered sequence of nodes in an undirected graph 

such that any pair of consecutive nodes is connected by an edge. 

An undirected graph is connected if there is a path between every 

two nodes and unconnected otherwise. A (spanning) tree T is an 

undirected graph over a set of nodes V that is connected and has 

N − 1 edges, where N = | V | is the number of nodes. 

An undirected weighted graph is a tuple G w 

= (G , w q ) where 

G = (V , E ) is an undirected graph, and w q : E → M ⊆ R 

q ×q \{ 0 } is 
a function that associates a non-zero positive definite weight ma- 

trix to each edge. 

This last definition is a generalization of the usual one because 

we introduce matrix weights. This consideration is done to model 

multiple input/output signals of the agents. e.g. three-dimensional 

position or speed of a vehicle; active and reactive power of an 

electric generation unit; etc. The dimension of a weighted graph is 

the dimension q of the image matrix space M of the weight func- 

tion w q . An unweighted graph is a special case of weighted graphs 

where w q ((i, j)) = I q , ∀ (i, j) ∈ E . 

A strictly directed graph , or strict digraph, is an unweighted 

graph where the edge set E ⊆ V × V is redefined so that each 

edge has an unique orientation. That is, (i, j) ∈ E ⇒ ( j, i ) / ∈ E . In 

this case the notation (i, j) ∈ V × V and ( j, i ) ∈ V × V represent 

two different edges that cannot be simultaneously part of a strict 

digraph. An arbitrary strict digraph generated by giving orienta- 

tions to the edges of an undirected unweighted graph G , will be 

denoted by G 

o . 

Because of the inclusion of matrix weights, the usual definitions 

of graph related matrices also needs to be generalized. The Inci- 

dence Matrix , denoted D (G 

o ) , of a strict digraph G 

o of dim { G 

o } = q 

is defined as a matrix where each block o ik = [ D (G 

o )] ik takes ei- 

ther the value o ik = −I q if the edge e k has its origin in i , o ik = I q 
if node i is the destination of edge e k or o ik = 0 q ×q otherwise. 

Note that this definition assumes that the edges are labeled by the 

index k . Different labeling systems would lead to different inci- 

dence matrices. 

The adjacency matrix , denoted A (G w 

) , of a weighted graph G w 

is constructed so that each block W ji := [ A (G w 

)] i j takes the value 

W ji = w q (( j, i )) ∈ M if ( j, i ) ∈ E or W ji = 0 otherwise. Note that 

this matrix is symmetric. 

The matrix degree of node i , �i , in an undirected loopless 

weighted graph is defined as the sum of all elements of the 

respective block column or block row of the adjacency ma- 

trix. i.e. �i = 

∑ N 
j=1 W i j = 

∑ N 
i =1 W i j . The degree matrix is �(G w 

) = 

diag { �1 , . . . , �N }. 

The Laplacian matrix of an undirected loopless weighted graph 

G w 

is ˆ L (G w 

) := �(G w 

) − A (G w 

) . Each column and row of ˆ L (G w 

) 

sums up to zero. This can respectively be written as 1 ′ ˆ L (G w 

) = 0 

and 

ˆ L (G w 

) 1 = 0 . It can be shown that for weighted graphs, ˆ L (G w 

) = 

D (G 

o ) W D 

′ (G 

o ) , where W = diag { W i k j k 
} | E | 

k =1 
= diag { w q (e k ) } | E | k =1 

and 

G 

o is an arbitrary strict digraph defined from G = (V , E ) . From this 

property is immediate that the Laplacian matrix is positive semi- 

definite. 

Furthermore, it can also be shown that rank { ̂ L (G w 

) } = (N − 1) q 

if and only if the loopless undirected weighted graph G w 

is con- 

nected. From here, if the eigenvalues of the Laplacian matrix of 

an undirected weighted graph are ordered in an increasingly, it is 

clear that the first q of them are identically zero. The algebraic con- 

nectivity, a (G w 

) := λq +1 , is the (q + 1) -th element of the increas- 

ingly ordered set eig { ̂ L (G w 

) } . If it is zero, then the graph is not 

connected. 

3. The consensus problem 

3.1. Multiagents systems 

Even though consensus based control is formulated for Multi 

Agents Systems, it is not easy to find a general description of such 

a system in the related works. Typically, the plant over which con- 

trol is performed is considered to be a set of simple integrators in 

continuous time. This is a very particular case and therefore it can 

be difficult to generalized it to other relevant configurations. 

In a realistic scenario in a control theoretical framework, the 

different com ponents of the network can be defined according to 

their physical characteristics or functions. The agents correspond 

to the controlled machines, with possible non linear dynamics in 

continuous or discrete time or discrete states. For example, elec- 

tric generators in a grid or mobile vehicles. For simplicity, we will 

consider that each of the N agents in a set V = { 1 , 2 , . . . , N} are 

described by linear continuous dynamics. Not making the linearity 

assumption would lead to complications that are not due to the 

multi agent plant or the consensus problem, but due to the mod- 

eling of the components. 

Definition 3.1. A linear autonomous agent (AA) is an agent i ∈ V 

with individual dynamics given by: 

˙ x i = A i x i + B i u i 

y i = C i x i (1) 

Where A i ∈ R 

n i ×n i , B i ∈ R 

n i ×q , and C i ∈ R 

q ×n i . 

Note that the number of outputs does not depend on the agent 

but is always q . We assume that C i B i � = 0 is full rank. We also 

assume that each agent has the same number of outputs as in- 

puts. The aggregation of all these components defines a network of 

agents. 

Definition 3.2. An autonomous agents network (AAN) is the aggre- 

gation of all N autonomous agents in a set V . The dynamics of such 

a network are described by: 

˙ x = Ax + Bu 
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