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a b s t r a c t

We consider boundary output feedback stabilization for a multi-dimensional Kirchhoff plate with
boundary observation suffered from a general external disturbance. We adopt for the first time the active
disturbance rejection control approach to stabilization of multi-dimensional partial differential equations
under corrupted output feedback. In terms of this approach, the disturbance is estimated by a relatively
independent estimator, based on (possibly) an infinite number of ordinary differential equations reduced
from the original PDEs by infinitely many time-dependent test functions. This gives a state observer, an
additional result via this approach. The disturbance is compensated in the feedback-loop. As a result, the
control law can be designed almost as the same as that for the systemwithout disturbance. We show that
with a time varying gain properly designed, the observer driven by the disturbance estimator is con-
vergent; and that all subsystems in the closed-loop are asymptotically stable. We also provide numerical
simulations which demonstrate the convergence results and underline the effect of the time varying high
gain estimator.

& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the past three decades, many control approaches have been
developed to cope with uncertainty or external disturbance in
control systems. These include the internal model principle for
output regulation to deal with external disturbance; the robust
control for systems with uncertainties; the sliding mode control
for system with internal and/or external disturbance; and the
adaptive control for systems with unknown parameters, to name
just a few. Most of these approaches are based on the idea of
“worst case concern”, and the control strategies designed are
usually over-conservative. This results in excessive control efforts
(or using very large control energy), which is often unnecessary
for particular systems.

The active disturbance rejection control (ADRC) proposed by
Han, however, adopts a quite different way, see, for instance, [12]
for a nice survey. One of the remarkable features of ADRC is that
the disturbance is first estimated in real time through an extended
state observer [9], and it is then compensated (canceled) in the
feedback loop. Because of this estimation/ cancelation nature, the

control energy can be significantly reduced [25] in the closed-loop
system. Furthermore, it has been proved that the ADRC is capable
of dealing with very complicated uncertainties and disturbances;
including coupling of the external disturbance, the system un-
modeled dynamics, and the superadded unknown part of control
input. The convergence of ADRC for general nonlinear lumped
parameter systems is available recently in [9,10]. The general-
ization of ADRC to the systems described by partial differential
equations (PDEs) are reported in our recent works [6–8]. Note that
the disturbance considered in [6–8] is only found in the control
channel. Other interesting studies on stabilization of unstable
systems or even anti-stable PDEs were previously investigated in
[20] where it introduces a non-adaptive design for wave equation
with boundary anti-damping; [21] where it introduces the design
for wave equation with in-domain anti-damping; and [15] where
it introduces adaptive design for the first time for handling the
parabolic PDEs with disturbance and anti-damping. In recent
study [2], the idea of ADRC is applied to an observer based output
feedback stabilization for a one-dimensional wave equation con-
sidered in [5] but with general boundary external disturbance.
However, since the system in [2] is one-dimensional, the dis-
turbance depends on time only.

In this paper, we generalize [2] to a multi-dimensional PDE. We
consider boundary stabilization of the following multi-
dimensional Kirchhoff equation with Neumann boundary control
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and observation, where the observation is suffered from an
external disturbance:

wttðx; tÞ�γΔwttðx; tÞþΔ2wðx; tÞ ¼ 0; xAΩ; t40;
wðx; tÞjΓ ¼ 0; tZ0;
Δwðx; tÞjΓ ¼ uðx; tÞ; tZ0;
wðx;0Þ ¼w0ðxÞ;wtðx;0Þ ¼w1ðxÞ; xAΩ;

Youtðx; tÞ ¼ fY1;outðx; tÞ;Y2;outðx; tÞg

¼ ∂wðx; tÞ
∂ν

;
∂wtðx; tÞ

∂ν
þdðx; tÞ

� �
; xAΓ; tZ0;

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð1:1Þ

where Ω�RnðnZ2Þ is a bounded domain with smooth C4-
boundary Γ∂Ω, Δ¼ Pn

i ¼ 1
∂2
∂x2i

is the standard Laplacian,

Δ2 ¼ Pn
i ¼ 1

∂2
∂x2i

Pn
j ¼ 1

∂2
∂x2j

, ν is the unit normal vector of Γ pointing

to the exterior of Ω, γ40 is usually a small number by which the
Euler–Bernoulli plate is the limit case of the Kirchhoff plate as
γ-0, u(x,t) is the control input, ðw0ðxÞ;w1ðxÞÞ is the initial value,
and d(t) is the unknown external disturbance which is supposed to
satisfy that

dAL1ð0;1;CðΓÞÞ \ Cð0;1;CðΓÞÞ; dtAL1ð0;1;CðΓÞÞ: ð1:2Þ

The Kirchhoff plate is originally a two-dimensional mathema-
tical model used to determine the stresses and deformations in
thin plates subjected to forces and moments. This theory is an
extension of the Euler–Bernoulli plate beam theory. The theory
assumes that a mid-surface plane can be used to represent a three-
dimensional plate in two-dimensional form. In one-dimensional
case, it reduces to the Rayleigh beam by adding the rotary inertia
effects to the Euler–Bernoulli beam [13].

We consider system (1.1) in the energy Hilbert state space H¼
ðH2ðΩÞ \ H1

0ðΩÞÞ � H1
0ðΩÞ and the control space U ¼ L2ðΓÞ.

Throughout the paper, wt or _w denotes the derivative of w respect
to t which is clear from the context. Let us first explain why we
choose such a type of output Youtðx; tÞ. There are basically two
reasons for this. First, when there is no disturbance, the velocity
feedback

uðx; tÞ ¼ �kY2;outðx; tÞ; k40; ð1:3Þ

stabilizes exponentially system (1.1) provided that the following
geometrical condition on Ω is satisfied [16]:

ðiÞ There exists a vector field hðxÞ defined on Ω such that
hðσÞ ¼ pðσÞνðσÞ for a smooth pðσÞ; σAΓ;

ðiiÞ For some constant ρ40 and all vectors yAðL2ðΩÞÞn :R
ΩHðxÞyðxÞ � yðxÞ dxZρ

R
Ω jyðxÞj 2 dx where HðxÞ ¼ f∂hi=∂xjgni;j ¼ 1:

8>>>><>>>>:
ð1:4Þ

For n¼2, condition (1.4) can be removed [14]. So throughout the
paper, (1.4) is always assumed except n¼2. Second, the mapping
w-Y1;out from H2ðΩÞ to L2ðΓÞ is a compact mapping. The output
feedback by Y1;outðx; tÞ only cannot stabilize exponentially system
(1.1) at least through linear feedback when there is no disturbance
(see, e.g., [3]). In fact, the observation Y1;outðx; tÞ is not an exact
observable output for system (1.1) and hence is hard to be used to
design an observer. To see this point, we introduce a positive self-
adjoint operator A in L2ðΩÞ, defined by

Aϕ¼Δ2ϕ; DðAÞ ¼ fϕAH4ðΩÞjϕjΓ ¼ΔϕjΓ ¼ 0g: ð1:5Þ

By interpolation result in Theorem 11.6, Chapter 1 of [18], we have
the following space identification:

DðAθÞ ¼H4θðΩÞ \ H1
0ðΩÞ; 1

8oθo5
8;

DðAθÞ ¼ ϕAH4ðΩÞjϕjΓ ¼ΔϕjΓ ¼ 0
n o

; 5
8oθr1;

8<: ð1:6Þ

which gives

A1=2ϕ¼ �Δϕ; DðA1=2Þ ¼H2ðΩÞ \ H1
0ðΩÞ;

DðA1=4Þ ¼H1
0ðΩÞ:

(
ð1:7Þ

We endow DðA1=4Þ ¼H1
0ðΩÞ with the following equivalent inner

product induced norm:

Jψ J2
DðA1=4Þ ¼ Jψ J2L2ðΩÞ þγ J∇ψ J2L2ðΩÞ ¼ J ð1þγA1=2Þ1=2ψ J2L2ðΩÞ: ð1:8Þ

By this relation, the state space becomes H¼DðA1=2Þ � DðA1=4Þ and
the inner product induced norm in H is given by

J ðf ; gÞ> J2 ¼ JΔf J2L2ðΩÞ þ J ð1þγA1=2Þ1=2gJ2L2ðΩÞ

¼ JΔf J2L2ðΩÞ þ JgJ2L2ðΩÞ þγ J∇gJ2L2ðΩÞ; 8ðf ; gÞ> AH:

Let μm40, m¼ 1;2;…, be the eigenvalues of operator A; μm-1
as m-1; and let ϕm be the eigenfunction corresponding to λm
with Jϕm JH1

0ðΩÞ ¼ 1. A simple calculation shows that
λm ¼ μm=ð1þγ ffiffiffiffiffiffiffiμm

p Þ;ϕm

� �
is an eigen-pair of A defined by

A¼ ð1þγA1=2Þ�1A; DðAÞ ¼DðAÞ: ð1:9Þ
It is seen that for any mZ1,

ðwmðx; tÞ;wm
t ðx; tÞÞ ¼ ei

ffiffiffiffiffi
λm

p
t ϕmðxÞffiffiffiffiffiffi

λm
p ; iϕmðxÞ

 !
ð1:10Þ

is a solution of the following equation:

wm
tt ðx; tÞ�γΔwm

tt ðx; tÞþΔ2wmðx; tÞ ¼ 0;
wmðx; tÞjΓ ¼ 0;
Δwmðx; tÞjΓ ¼ 0:

8><>: ð1:11Þ

Since from (1.11),

λm½Jϕm J2L2ðΩÞ þγ J∇ϕm J2L2ðΩÞ� ¼ JΔϕm J2L2ðΩÞ; ð1:12Þ

we have

J ðwmð�;0Þ;wm
t ð�;0ÞÞJ2H ¼ ϕmffiffiffiffiffiffi

λm
p ;ϕm

 !�����
�����
2

H
¼ 2; m¼ 1;2;…:

ð1:13Þ
However, by the Sobolev trace theorem and (1.6), for any T40,
there exists a constant C40 independent of m such thatZ T

0

�����
�����∂wmð�; tÞ

∂ν

�����
�����
2

L2ðΓÞ
dt ¼ T

λm

�����
�����∂ϕm

∂ν

�����
�����
2

L2ðΓÞ
rCT
λm

�����
�����ϕm

�����
�����
2

H3=2ðΩÞ
rCT
λm

�����
�����A3=8ϕm

�����
�����
2

L2ðΩÞ

¼ CTμ1=4
m

λm

�����
�����A1=4ϕm

�����
�����
2

L2ðΩÞ
¼ CTð1þγ ffiffiffiμp

mÞ
μ3=4
m

�����
�����ϕm

�����
�����
2

H1
0ðΩÞ

-0 as m-1:

ð1:14Þ
By (1.13) and (1.14), the “observability inequality”Z T

0

�����
�����Y1;outð�; tÞ

�����
�����
2

L2ðΓÞ
dt ¼

Z T

0

�����
�����∂wð�; tÞ

∂ν

�����
�����
2

L2ðΓÞ
dtZCT

����ðwð�;0Þ;wtð�;0ÞÞ
����2
H

ð1:15Þ
does not hold for any T40 and CT 40.

Nevertheless, we still need the signal Y1;outðx; tÞ ¼ ∂wðx;tÞ
∂ν

���
Γ
for the

purpose of output feedback stabilization. This is because if we
come across the disturbance such that dðx; tÞ ¼ �∂wt ðx;tÞ

∂ν

���
Γ
, then

Y2;outðx; tÞ � 0. For this case, we are not able to stabilize the system
without Y1;outðx; tÞ.

The contributions of this paper lie in the following: (a) we
design an adaptive (x,t)-dependent external disturbance estimator
while in existing literature, only time dependent estimator is
available; (b) we provide actually a numerical scheme by which for
any fixed time, only a finite number of ODEs to be solved to get the
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