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A B S T R A C T

Variable differential pressure flowmeters are very often used in many industries. Therefore, within the frame-
work of this work, this method is adapted for measuring the flow and quantity of natural gas using the theory of
similarity approaches. The article presents a simple method of obtaining analytical correlations for the natural
gas flow rate measurement, and produces an equation for natural gas expansion factor. It also investigates the
limits of applicability of the standard equation for the steady flow expansion factor. The results of an analysis of
the errors in gas flow rate measurement, without being taken into account by the Strouhal number, in different
pipe sections and flow transducers, have been presented.

1. Introduction

Flow rate measurement is an important procedure for organizing
various technological processes. Measuring the flow rate and the
quantity of steady fluid and gas flows is a fairly well-solved problem,
where an acceptable level of measurement error is achieved. But in
various production processes when pumping oil or natural gas, where
pump and compressor stations are available, there is always an un-
steady fluid and gas flow. In this case, the methods that are designed for
steady flows perform the flow rate measurement with large errors.
Therefore, unsteady fluid and gas flow rate measurement is also an
important issue. There is a large number of theoretical and experi-
mental works that solve the problem of increasing the accuracy and
reliability of pulsating flow rate and quantity measurement. Such works
include studies [1–3], which describe the theoretical aspects of im-
proving the measurement techniques and experimental works. There
are papers that generalize previously obtained results like the type of
article [4]. Pulsating flows are important for applied industries. For
example, in the work [5], the authors also attempt to describe the
motion of pulsating flows mathematically, then to check the theoretical
calculations by experiment. The work [6] theoretically describes the
behavior of viscous pulsating flows. One of the latest works, which
outlines the attempts to improve methods of pulsating flow rate mea-
surement, is the study [7]. In paper [8] the author gives damping cri-
teria for pulsating gas flow measurement. The influence of pulsations
strongly affects the correct operation of many flowmeters. The influ-
ence of pulsations on the flow measurement by the method of variable
pressure drop is described in [9,10], and in [11] the effect of pulsations

on the flow is also described and a model of such a flow is constructed.
Many models and experimental works connected with the study of
unsteady flows of liquids and gases are associated with the pulsation
frequency that characterizes such flows.

It should be taken into account that the variable differential pres-
sure method, which is often used for natural gas flow rate measurement
[12], is widely used. In this regard, methods for measuring the flow rate
and quantity of natural gas require improvement for use in pulsating
flows.

The analysis of existing works shows the complexity of models and
approaches in describing the flow of pulsating approaches, thereby
complicating the process model of measuring the flow and quantity of
fluids and gases. Some works have no direct connection with the ex-
isting equations of hydrodynamics that describe the fluid and gas flow,
but introduce correction factors. It should also be noted that in almost
all studies there is a direct relationship with the Strouhal number or, in
case of viscous fluids, the Womersley number. Therefore, within the
framework of this paper, the task is to obtain a simple model for the
method of natural gas pulsating flow rate measurement. The problem is
solved using methods of theory of similarity and dimensional theory,
which is often used in hydrodynamics.

2. Theoretical bases necessary for modelling a pulsating flow

To obtain simple correlations, the purpose of which is to measure
the pulsating natural gas flow rate, it is necessary to reconstruct the
equations of fluid and gas flow. For this, the methods of theory of si-
milarity are used. Thus, the author solved the problem of modelling the
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process of measurement of pulsating incompressible fluid flow in [13],
the approach to the solution was previously described in paper of the
author [14].

Therefore, on the one hand, the methods of theory of similarity are
used to modify the equations of hydrodynamics in accordance with
[15]. On the other hand, we shall leave the Strouhal number as the
main parameter that describes the pulsations in the gas flow.

In accordance with [16], for one dimensional flow of pulsating ideal
fluid, whose density is assumed to be constant within the framework of
the problem, we shall write the Euler equation as follows:
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where −V fluid or gas velocity, −t time, −ρ fluid density, −p fluid
pressure in the pipe, −x axis of movement.

Taking into account that the equation is one-dimensional in the
given model, it is more convenient to use the total derivatives instead of
partial derivatives Then, divide Eq. (1) into convective component of
velocity derivative. Upon canceling out such values we have the fol-
lowing equation:
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Substitute the differential dx in the last formula with resulting
characteristic length L of channel, and time differential dt with the
value contrary to the finite interval of time, i.e. frequency of flow
pulsations f1/ , afterward the formula (2) will be as follows:
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Expand the brackets and integrate formula (3), whereupon we will
have the following formula:
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The =Sh Lf
V formula in Eq. (4) represents Strouhal number and will

be the measure of ideal fluid pulsating flow unsteadiness.
Thus we shall finally rewrite Eq. (4) as solution of Eq. (1) for pul-

sating flow as follows:
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Similarly, we can modify the equation of continuity of the flow,
which will be as follows:

+ =j Sh const( 1) , (6)

where formula =j ρV is called gas or fluid flow density.
If < <Sh 1 or →Sh 0, Eqs. (5) and (6) shall become a standard

Bernoulli's equation for continuity of steady flow.
To model the processes of gas flow, we need to write Eq. (5) for the

case of adiabatic flow. This will be achieved by integrating Eq. (3) with
the following equation for adiabatic gas flow [17]:

=p ρ const/ ,γ

where −γ is a natural gas adiabatic exponent.
The final equation for the gas flow is obtained in the following form:
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The last equation contains the Strouhal number, which char-
acterizes the pulsating flow and can be a quantitative measure of a si-
milar process of adiabatic gas flow.

Thus, the theory of similarity methods allow to obtain simple ap-
proaches for describing correlations for a pulsating fluid or gas flow
that are easier to apply for modelling measurement procedures.
Therefore, using Eqs. (6) and (7), we simulate the method of pulsating

gas flow rate measurement for the variable differential pressure
method.

3. Unsteady natural gas flow rate measurement using a Venturi
tube

In accordance with the traditional approach, which is described in
many studies, as in [17], it is necessary to formulate equations for
obtaining correlations in the pulsating flow of adiabatic gas according
to Eqs. (6) and (7). We assume that in each measured cross-section
there is a set of parameters of the pulsating gas, which includes the pipe
diameter, gas velocity, pressure, Strouhal number and gas density.
Hydraulic losses in this task are not taken into account because the
purpose of our study is not the discharge coefficient, but the expansion
factor for natural gas.

Fig. 1 shows a diagram of pulsating gas flow through a Venturi tube.
In accordance with Fig. 1, we shall formulate the following equations
for Sections 1–1 and 2–2 in the figure:
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It is known that for density and pressure in an adiabatic gas there is
the following expression [17]:
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Let us express the flow velocity in the first Sections (1–1) in terms of
the velocity in the second section using Eqs. (9) and (10):
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where = −β d D/ is a traditional diameter ratio, = −+
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is a re-
lative coefficient associated with pulsations in the sections of the
Venturi tube.

Taking into account the pulsating nature of Eqs. (6) and (7), the
expression for the velocity of approach factor will also vary [13]:
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where = − −Δp p p1 2 is differential pressure in Venturi tube,
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is a coefficient depending also on the Strouhal numbers.
As a result, the simultaneous solution of Eqs. (8), (9), (11), (12)

allows us to find the equation for the consumption of natural gas as
follows:
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In the last Eq. (13) we introduce the accepted standard notations
from [17], and finally rewrite it as follows:
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where −ε is a gas expansion factor beyond a Venturi tube, which is

Fig. 1. Diagram of pulsating gas flow in a Venturi tube.
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