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A meter proving factor can be considered as a calibration parameter, by expressing the ratio the reference
volume and the gross volume of liquid passed through a meter. The international guideline recommends
Dixon's test for outliers to a meter proving factor set. However, the literature says that this statistic test is
restricted only to data with Gaussian behavior, besides of not to be able to detect and treat two outliers at
the same time. Here, Gaussian behavior of the meter proving factor set is evaluated, then different
parametric and nonparametric approaches for detection and treating outliers applied to turbine meter
proving factors for custody transfer of liquefied petroleum gas are compared. Afterwards, this effect is
evaluated in relation to the number of outliers and how this handling affects the variable range criteria
for expanded uncertainty in average meter proving factor. The results show that different average meter
factors can be reached for each nonparametric and parametric test; anyway, no statistically significant
effect between them is noticed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Although not a renewable fuel, liquefied petroleum gas (LPG) is
an alternative fuel, safe, with few atmospheric emissions, low-cost
and considerable social benefits [1]. Recent studies in many global
markets indicate that LPG can be an excellent alternative fuel for
the road transport sector [2].

Despite of the growing use of ultrasonic meters, turbine flow
meters still are widely used to measure this valuable fuel [3].

Pipeline transportation companies consider the meter calibra-
tion as one of the most important parameter in order to guarantee
reliability in commercial transactions. Meter calibrations can be
more relevant when the device meter is mechanical as a turbine
meter that is more sensitive to friction and wear [4]. In this sce-
nario, the term “proof” represents tests in meters. A volume meter
is considered as proved, when a materialized measure of volume,
called as prover, is compared to the totalized volume indication of
the meter. The totalized volume by the meter and the prover are
submitted to several calculations, using correction factors to con-
vert volumes to reference conditions, establishing a meter factor
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(MF). The meter factor is a dimensionless number obtained by
ratio of the volume of liquid passing through the meter and the
volume of the prover, both at reference conditions for a particular
flow rate [5].

Meter proving factors or simply meter factors (MF) are usually
monitored to detect and track down trends or sudden shifts as
indications when carrying out maintenance and calibration of the
meter or of the auxiliary measuring equipment.

The turbine flow meter response depends mainly on changes in
flow rate, mechanical condition of the meter, physicochemical
properties of the fluid, contaminants and flow impurities. These
parameters can change the pulse numbers for each volumetric
unit of liquid passing through the turbine flow meter, i.e., the
meter factor [6].

Well defined acceptance criteria are usually used to evaluate
the meter factor. Custody transfer players in petroleum industry
reach a consensus in relation to a minimum number of proving
runs that agree within a maximum range between high and low
meter factors, to a meter proving interval and deviation limit be-
tween consecutive meter factors [7]. This latter parameter is very
useful to shed lights in the reliability of the complete metering
system, meter and proving systems. Fixed limits are based on the
operator experience, however statistics methods can be used to
decide if the variability of the meter proving is suitable or not.

In order to improve this essential control, a statistical analysis


www.sciencedirect.com/science/journal/09555986
www.elsevier.com/locate/flowmeasinst
http://dx.doi.org/10.1016/j.flowmeasinst.2016.02.002
http://dx.doi.org/10.1016/j.flowmeasinst.2016.02.002
http://dx.doi.org/10.1016/j.flowmeasinst.2016.02.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.flowmeasinst.2016.02.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.flowmeasinst.2016.02.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.flowmeasinst.2016.02.002&domain=pdf
mailto:elciooliveira@petrobras.com.br
http://dx.doi.org/10.1016/j.flowmeasinst.2016.02.002

30 E.C. de Oliveira et al. / Flow Measurement and Instrumentation 48 (2016) 29-35

of a single set of meter proving factor is required. A statistically
based uncertainty criterion is recommended to determine the
acceptability of a set of meter proving factor. The most re-
presentative guidelines to describe these tests, APl MPMS 13.1 8]
and API MPMS 13.2 [7] calculate an average or arithmetic mean
and indicating, exclusively, Dixon's test for outliers. However, it is
worth mentioning that this approach is specific when data are
parametric, i.e. they have Gaussian distribution [9].

The guideline API MPMS 13.2, Appendix B, recommends Dix-
on's test for outlier and makes the following consideration: “Al-
ternate outlier tests are not expected to duplicate the exact results
provided by these procedures; however, alternate computational
methods should achieve the same purpose intended by the outlier
tests in this appendix [7]”.

Contradicting this guideline, this paper suggests, first, that the
Gaussian data behavior be evaluated based on Shapiro-Wilk test
[10]. Then, beyond this proposed test, other parametric and non-
parametric approaches are discussed and compared.

The aim of this paper is to evaluate the whether or not the
meter proving factor set follows a Gaussian or normal distribution,
and then compares different parametric and nonparametric ap-
proaches for detection and treating outliers applied to turbine
meter proving factors for custody transfer of liquefied petroleum
gas.

2. Methodology

The methodology is divided into four parties. The two first
parts are revisions of the Shapiro-Wilk procedure and parametric
tests for detection and treating of outliers; the third part is an
introduction to the nonparametric tests for detection and treating
of outliers and the last one is the variable range criteria for ex-
panded uncertainty in average meter factor.

Revision of the nonparametric statistical analysis

2.1. Shapiro-Wilk test [10]

To verify if one data set can be treated as Gaussian or normal
distribution, this paper uses Shapiro-Wilk test.

In this test, the data number (n) is a limitation, 3 <n < 50.

The test procedure is:

e Primarily, set of n data X; (i=1, 2, ..., n) is arranged in ascending
order;
® The subtraction are calculated: (Xpui1)-i — Xi);

® The index i varies from 1 to n/2 or from 1 to (n + 1)/2, according
to n being even or odd, respectively;

e The multiplications are calculated: a;(Xn1)-i — Xi);

e The coefficients qg; are tabulated;

® The sum is calculated: SW = Y aiXn+1)-i — Xi);

® The sum of squared is calculated: SQT= Y (X; — X)%, or
(n — 1)S?, considering X as the arithmzetic mean of the set data;

® The ratio is calculated: Wcylared = %;

® Compare the calculated value W.gcuareq to the value Wigcq. If
Weatculated > Wiriticat» the data set can be treated as Gaussian or
normal distribution.

2.2. Parametric tests for outliers

Scientific studies derived from petroleum industry flow mea-
surements have inserted outlier tests in their approaches, always
considering the data behavior as Gaussian, without testing them
[11-15].

2.2.1. Dixon's test [16]

Dixon's Q test, or simply the Q test, is one way to assess if
suspected data belong to a population. Dixon Q value is defined as
the ratio of the difference between the suspect value and the
closest to this value and the difference between the largest and the
smallest value of the set.

Q calculated value by Eq. (1), Eq. (2) or Eq. (3), depends on the
sample size, is compared to the Q critical value for a desired level
of confidence. If it is not greater than the critical value, the suspect
value is kept, otherwise it is rejected.

Considering a set of n data x; (i=1, 2, ..., n) arranged in as-
cending order. The statistical test, for 3 <n <7, Eq. (1) (depending
if X1 or x,, is the suspect value):

_ XX

Q37 = or
Xn — X1
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For 8 <n <12, Eq. (2):

X2 =X
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For 13 <n <40, Eq. (3):

X3 =X
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One limitation of this approach is when it has two suspect
results in high or low part of the sample data and when there are
two suspect results one at each end of the data set [17].

Another drawback of Dixon's test is the fact that increasing the
number n of measures, it also increases the probability of occur-
rence of large gaps in the set of measures. For example, to two
thousand measures, the probability of detecting a deviation
greater than 3.29 is large and there is no sense to discard the
measure once the probability of a value from standard normal
distribution greater than 3.29 is about 0.0005, i.e,
P(X > 3.29) ~ 0.0005, where X~N(0, 1). Chauvenet's criterion
eliminates this problem.

2.2.2. Chauvenet’s criterion [18]
Based on this criterion, one measure must be rejected if
|dj| = ‘(y] - 37)’ > dcp, where dg, is the Chauvenet's limit for rejection,

defined by: p,= [ "Gondn+ [ Gdn= [ Gandy = 51,
where G(7) is the Gaussian function. In other words, a measure may
be excluded if the probability of obtaining the specific deviation from
the mean is less than 1/(2n).

This criterion establishes that a measure x; must be discarded if
the r calculated value by Eq. (4) is larger than the critical value for
those degrees of freedom, considering X as the arithmetic mean
and s(X) as the standard deviation:

re xi — X
sX) “4)

2.2.3. Grubbs’ test [19]

Grubbs' test is firstly performed to verify the existence of a
dispersed value in each extremity of the data set. If this first
analysis, one of the two values is considered to be scattered, it is
refused, withdrawn from data set and new test, checking for the
existence of a dispersed value in each extremity of the data set is
carried out and so on. Otherwise, if this first analysis, both values
are accepted as not dispersed, the test is finished and the re-
maining data set is used for analysis. If in the second analysis, the
two results of extremity are considered as dispersed, they must be
discarded, removed from the data set and new test is carried out,
verifying the existence of two outliers in each extremity of the
data set, and so on, until both values are accepted as not dispersed.
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