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a b s t r a c t

Velocity–area methods are used for flow rate calculation in various industries. Applied within a fully
turbulent flow regime, modest uncertainties can be expected. If the flow profile cannot be described as
“log-like”, the recommended measurement positions and integration techniques exhibit larger errors. To
reduce these errors, an adapted measurement scheme is proposed. The velocity field inside a Venturi
contour is simulated using computational fluid dynamics and validated using laser Doppler anemometry.
An analytical formulation for the Reynolds number dependence of the profile is derived. By assuming an
analytical velocity profile, an uncertainty evaluation for the flow rate calculation is performed according
to the “Guide to the expression of uncertainty in measurement”. The overall uncertainty of the flow rate
inside the Venturi contour is determined to be 0.5% compared to ≈0.67% for a fully developed turbulent
flow.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Flow measuring devices can be grouped into three main cate-
gories: integrative methods like differential pressure measure-
ments or magnetic inductive devices, semi-integrative methods
like ultrasonic path meters, and sampling based techniques which
rely on a discrete number of measurement positions such as ve-
locity–area methods.

These methods have been successfully applied to a variety of
flow conditions. Especially for larger pipes, open field acceptance
tests or temporary measurements, they present a feasible alter-
native to conventional flow measuring devices. Another advantage
is that these methods can easily be applied within an arbitrary
measurement section or open channel flow. Though traditionally
used with pitot tubes or inserted devices, they can also be applied
to optical velocity measurement techniques like laser Doppler
anemometry (LDA).

In order to convert the pointwise velocities to a flow rate, a
precise numerical integration method is preferable. The overall
idea is to get an acceptable uncertainty for the flow rate with the
least possible number of sample positions. The most general for-

mulation of the measurement problem is: ∫ ∫ φ= ·
π

Q v r d dr
R

0 0

2
. For

the case of a rotational symmetric turbulent pipe flow in a circu-
lar measurement section the problem is reduced to a path

integration: ∫π= ·Q r v dr2
R

0
. For a known velocity profile the

metrological effort can be even further reduced from a path
measurement to a single point measurement. Aichelen [1] pro-
posed placing the probe at the position where the volumetric flow
velocity occurs. The point of the average velocity varies for dif-
ferent models of turbulent pipe flow depending on the Reynolds
number, as shown in Fig. 1. A different approach is to measure the
centreline velocity while computing the flow rate using a cali-
bration factor as proposed by Strunck et al. [11]. However, by re-
stricting the measurement of an unknown profile to just one point,
there is no way to tell whether the implicit assumptions con-
cerning the shape of the profile are viable. Therefore, in general
multiple radial positions are necessary. Quite a few integration
techniques and guidelines for optimized measurement positions
have been published. Based on Winternitz and Fischl [15] the
commonly used integration procedures are described in the
standards ISO 3354 [3], ISO 3966 [4] and VDI 2640 [12]. These
methods are based on the assumption of a fully developed tur-
bulent pipe flow where the velocity can be described by “log-like”
behavior. This can only be achieved by a long undisturbed en-
trance length or flow conditioning both are often not feasible. The
true velocity field in the measuring plane is therefore in general
unknown, thus making the uncertainty evaluation of the standard
methods quite cumbersome.

In order to create well-defined conditions, a Venturi contour is
investigated. Due to the different shapes of the velocity distribu-
tion in the Venturi nozzle, it will be shown that the standard
velocity–area methods exhibit higher errors. To reduce the un-
certainty for the flow rate calculation, optimized measurement
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positions are derived. To compare the performance of the new
method, an uncertainty evaluation based on analytical velocity
profiles is applied. We consider the fully turbulent pipe flow first,
since the descriptions of the uncertainties in the standards are
rather short.

2. Uncertainty evaluation for fully developed turbulent pipe
flow

Velocity–area methods calculate the flow rate as follows: the
cross section is divided into equally sized parts. The measurement
position for each piece is given either by the centroid or the position
of the average velocity in this area. The flow rate is determined as
the mean measured velocity multiplied with the area of the cross
section. Some integration techniques apply an extrapolation proce-
dure/a wall correction. Recommended locations for up to five radial
sample positions are tabulated in the standards ISO 3354 [3], ISO
3966 [4] and VDI 2640 [12]. These procedures, developed to cope
with only limited access to data processing and automation, are log
linear (LL), log Chebyshev (LC), centroid (C), and centroid with wall
correction (CW). Due to the pointwise sampling of the continuous
velocity field, an intrinsic discretization error must be taken into
account. To assess this error, an analytical reference profile with
known flow rate is required. It is mandatory that this profile conveys
the essential geometric and hydraulic phenomena of the emulated
flow. A generic velocity formulation according to Gersten and Her-
wig [8] is used for the investigation of the discretization error. This
profile, referred to as the GH profile, is a closed formulation for the
streamwise velocity component of a flow in a round pipe. The pipe
flow model is valid in the fully turbulent range for Reynolds num-
bers between ×4 104 and ×1 107.

All methods were analyzed for the recommended five radial
sample positions. The derived flow rate was then compared to the
exact integration of the GH profile. This procedure is performed for
a Reynolds number range of ×1 104– ×2 106. All methods show a
Reynolds number dependence. It is worth noting that despite
measuring on only five radial sample positions, even the highest
discretization error is smaller than 2%. For the LL and LC, the errors
are smaller than 0.6% compare Fig. 2.

To point out the importance of the discretization error, the
overall uncertainty has to be derived. Neglecting any radial
asymmetries, a minimal measurement uncertainty can be estab-
lished based on the discretization error, the accuracy of the

traverse system, the uncertainty of the velocity measurement and
the uncertainty of the cross-sectional area.

The influence of the accuracy of the traverse system on the
measurement positions and its effect on the uncertainty of the
flow rate are determined as follows. The sensitivity coefficient for
each individual measurement position is estimated by a numerical
differential quotient as proposed in the “Guide to the expression of
uncertainty in measurement (GUM)” [5]. Each emulated mea-
surement is repeated with slightly shifted sample positions. For
the sake of simplicity all measurement positions are confined to a
dimensionless radial coordinate r R/ between 0 and 1. If for any
shifted sample position a radial coordinate outside of the conduit
occurs, it is mirrored either on the wall or on the centreline. Fur-
thermore, it is assumed that all positional errors are uncorrelated
and of the same magnitude. In ISO standard 3966 [4] a maximum
permissible positional error of 0.5% pipe diameter D is given. The
following configurations will be discussed: Δ =r R/ 0.50% D, 0.25%
D, 0.1%D and 0.05%D. For large Reynolds numbers the influence of
the positioning precision declines. This is due to the rather flat
velocity profile. The effect of the steeper curvature in the proxi-
mity of the wall cannot be sampled by the (recommended) five
measurement positions. The uncertainty contribution of the other
velocity–area methods is of the same order. The resulting traverse
uncertainties for the log Chebyshev method are shown in Fig. 3.

As an example, the uncertainty of the log Chebyshev method at a
Reynolds number of ×1 105 is presented. Fig. 2 yields the dis-
cretization uncertainty with 0.21%. Fig. 3 yields the positioning
contribution for an uncertainty of 0.1%D with 0.1%. The uncertainty
of the velocity measurement, based on laser Doppler anemometry, is
estimated to be 0.2%. The uncertainty of the cross section's diameter,
nominally 75 mm, is 0.03 mm thus accounting for an uncertainty of
the flow area of 0.1%.

The combined standard uncertainty for the log Chebyshev
method can be stated to be 0.32% (k¼1) or 0.65% (k¼2) for this
particular configuration, as shown in Table 1, column 1. For a
different measurement setup, e.g. a different velocity uncertainty,
these values can be easily adapted.

The example of the uncertainty assessment shows that the
discretization error accounts for 40% of the overall uncertainty. It is
obvious that with an increased number of sample positions, the
intrinsic discretization error can be reduced. Depending on the
application, the proper ratio between measuring time and accu-
racy has to be weighed.

Fig. 1. Radial location of the average velocity: (a) Gersten/Herwig profile acc. to [8],
(b) power-law profile acc. to Miller [9].

Fig. 2. Discretization error of velocity–area methods applied to the Gersten/Herwig
profile ( = )k 1 ; log linear (LL), log Chebyshev (LC), centroid (C) and centroid with
wall correction (CW).
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