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a b s t r a c t

Owing to distinct advantages such as the easy implementation, low cost, high safety and non-intrusive

sensing, the electrical capacitance tomography (ECT) is considered as a promising visualization

measurement technique, in which reconstructing high quality images is highly desirable for real

applications. In this paper, a multi-scale dynamic reconstruction model, which simultaneously utilizes

the ECT measurement information and the dynamic evolution information of a dynamic object, is

presented. The original dynamic image reconstruction problem is decomposed into a sequence of

inverse problems, which are solved successively from the largest scale to the original scale.

A generalized objective functional that considers the ECT measurement information, the dynamic

evolution information of a dynamic object, the temporal constraint and the spatial constraint is

proposed. An iterative algorithm, which integrates the beneficial advantages of the evolutionary

strategy (ES) algorithm and the homotopy method, is designed for solving the proposed objective

functional. Numerical simulations are implemented to evaluate the feasibility of the proposed

algorithm. For the cases simulated in this paper, the quality of the images reconstructed by the

proposed algorithm is improved, which indicates that the proposed algorithm is successful in solving

ECT inverse problems.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Multiphase flow systems exist widely in various fields such as
chemical, petrochemical, energy and power industries. Studies indi-
cate that dynamic behaviors of the multiphase flows are extremely
complicated, in which accurate measurement of the flow parameters
is crucial for understanding the complicated physical mechanisms,
improving system efficiency and reducing pollutant emission. Owing
to advantages such as the non-intrusive sensing, high speed, low cost,
easy implementation and high safety, ECT is considered as a promis-
ing visualization measurement technique. In recent years, the ECT
technology has been accepted as a potential approach for exploring
the complicated dynamic behaviors of the multiphase system or
process, identifying the two-phase flow patterns and visualizing the
distribution of the flame in the porous media [1–10].

Reconstructing high quality images plays a crucial role in real
applications of ECT technology. In the past years, improving the
reconstruction quality has attracted increasing attention, and var-
ious algorithms, which can be approximately divided into two

categories such as the static image reconstruction algorithms and
the dynamic image reconstruction algorithms, have been developed
for ECT image reconstruction. Popular static image reconstruction
algorithms include the linear back-projection (LBP) method [11],
the Tikhonov regularization method [12], the Landweber iteration
algorithm [13–15], the offline iteration and online reconstruction
(OIOR) algorithm [16], the truncated singular value decomposi-
tion (TSVD) method [17], the genetic algorithm (GA) [18], the
generalized vector sampled pattern matching method [19], the
generalized Tikhonov regularization methods [20–23], the simu-
lated annealing (SA) algorithm [24], the neural network algorithm
[25], the level set method [26,27], the algebraic reconstruction
technique (ART) and the simultaneous iterative reconstruction
technique (SIRT) [17]. A detailed discussion on numerical perfor-
mances of other algorithms can be found in [17,28].

In general, the above algorithms have played an important role
in promoting the development of the ECT technology and found
numerous successful applications. However, these algorithms fail
to consider information about the temporal dynamics when the
reconstruction object is in a dynamic process such as the multi-
phase flow and the visualization of flame. Applications indicated
that ECT measurement tasks often involve time-varying objects,
and it may be more reasonable to image a dynamic object using a
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dynamic reconstruction algorithm that can consider the dynamic
behaviors of the objects of interest. In the field of ECT image
reconstruction, dynamic reconstruction algorithms do not receive
enough attention at present. Fortunately, several pioneers have
investigated this subject, such as the particle filter (PF) method [29],
the Kalman filter (KF) method [30] and the four-dimensional
imaging method [31]. In general, the investigations of the dynamic
reconstruction algorithms in the field of ECT are far from perfect,
and finding an efficient dynamic reconstruction algorithm is highly
desirable. Studies reveal that one of the drawbacks for ECT image
reconstruction is the lack of enough quantity of information. There-
fore, introducing other information in the process of ECT image
reconstruction may improve the reconstruction quality. Traditional
static reconstruction algorithms only consider ECT measurement
information, while failing to pay attention to the dynamic informa-
tion when the measurement object is in a dynamic process. At
present, dynamic reconstruction algorithms, such as the PF method
and the KF method, have been developed for ECT image reconstruc-
tion. However, these methods fail to simultaneously consider the
temporal constraints, spatial constraints and dynamic evolution
information of the objects of interest. Applications indicate that
there is a close correlation among the images at different time
instants when the measurement object is in a dynamic process. As a
result, simultaneously considering the temporal constraints, the
spatial constraints and the dynamic evolution information of the
measurement objects may be essential for improving the recon-
struction quality. Additionally, ECT image reconstruction process is
often formulated into an optimization problem, and developing an
efficient algorithm is crucial for real applications. This paper
proposes a multi-scale dynamic reconstruction model, which inte-
grates the ECT measurement information and the dynamic evolution
information of a reconstruction object derived from the dynamic
equations. The original image reconstruction problem is decom-
posed into a sequence of inverse problems, which are solved
successively from the largest scale to the original scale. A general-
ized objective functional that simultaneously considers the ECT
measurement information, the dynamic evolution information of a
dynamic object, the temporal constraint and the spatial constraint is
proposed. An iterative algorithm that integrates the merits of the ES
algorithm and the homotopy method is designed for solving the
proposed objective functional. Numerical simulations are imple-
mented to validate the feasibility of the proposed algorithm.

The rest of this paper is organized as follows. Section 2
introduces the static model and dynamic model for ECT image
reconstruction and a concise comparison on both the models is
provided. In Section 3, the wavelet analysis method is introduced
and a multi-scale dynamic reconstruction model is presented.
A generalized objective functional is proposed in Section 4.
In Section 5, the homotopy method and the ES algorithm are
introduced, and an iterative scheme that integrates the advan-
tages of the both algorithms is designed for solving the proposed
objective functional. In Section 6, numerical simulations are
implemented to evaluate the feasibility of the proposed algo-
rithm, and a concise discussion on the numerical results is
provided. Finally, conclusions are presented in Section 7.

2. Model representation

2.1. Static reconstruction model

ECT image reconstruction process includes two key phases: the
forward problem and the inverse problem. The main motivation of
the forward problem is to compute the capacitance values from the
given permittivity distribution. The forward problem is a well-posed
problem, and can be easily solved by numerical methods such as the

finite element method and the finite difference technique. More
discussions on the forward problem can be found in [11,32]. The
inverse problem attempts to estimate the permittivity distribution
from the known capacitance data. The inverse problem is an ill-
posed problem, and special methods should be used to ensure the
numerical stability of an inversion solution. Owing to the ill-posed
nature of the inverse problem, the ‘soft-field’ effect and the under-
determined problem in the process of ECT image reconstruction,
exactly reconstructing the complicated objects is challenging at
present.

When the inaccuracy of the measurement is considered, the
static linearization ECT image reconstruction model is simplified
as follows [17]:

SG¼ Cþr ð1Þ

where C represents an m�1 dimensional vector indicating the
normalized capacitance values; G is an n�1 dimensional vector
standing for the normalized permittivity distribution, which
indicates the gray level values in the reconstructed image;
S stands for a matrix of dimension m�n; r is an m�1 dimen-
sional vector indicating the noises in the capacitance data.

2.2. Dynamic reconstruction model

The static reconstruction model only considers ECT measure-
ment information; however, the dynamic evolution information
of the objects of interest is not considered. Studies indicate that
increasing the quantity of information in ECT image reconstruc-
tion may improve reconstruction quality. For a dynamic object, a
direct approach of increasing the quantity of information is to
simultaneously utilize the ECT measurement information and the
dynamic evolution information of a dynamic object. As a result,
a dynamic reconstruction model can be formulated by

Gkþ1 ¼ f Gk,vkð Þ ð2Þ

yk ¼ h Gk,nkð Þ ð3Þ

where Gk is the unknown variable in the time instant k;
f describes the dynamic evolution information, which can be
expressed by a set of the partial differential equations in the
multiphase flow measurement; h is called as the measurement
equation; yk represents the capacitance measurement data in the
time instant k; vk and nk depict the uncertainties in the dynamic
evolution equation and the measurement equation respectively;
and the subscript k stands for the discrete time index. For
achieving fast reconstruction, Eqs. (2) and (3) can be approxi-
mated by a linearization formula

Gkþ1 ¼ FkGkþvk ð4Þ

yk ¼HkGkþnk ð5Þ

where Fk is the evolution operator in the time instant k; Hk

represents the measurement operator, which can be called as the
sensitivity matrix in ECT image reconstruction. If set Fk¼I, where I is
the identity matrix, Eq. (4) can be considered as a purely random-
walk evolution model. The model is often used in practice when a
better temporal dynamic model is not known [33].

In Eq. (5), merely the measurement noises are considered.
Studies indicate that the model approximation distortions derived
from the linearization approximation and the approximation of a
real problem may bring errors. The semiparametric model con-
siders the above-mentioned inaccuracies, which can be formu-
lated by [34]

yk ¼HkGkþBkþnk ð6Þ

where Bk is an m�1 dimensional vector representing the linear-
ization approximation errors.
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