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Abstract: The value of manually constructed and tuned Bayesian networks has been demonstrated 
empirically, however this informal process is limited in terms of what can be reasonably achieved.  This 
paper presents the application of a formal machine learning process, EM learning, to a manually 
constructed CPN for the assessment of the severity of sepsis. Through learning, the model is tuned to 
predict 30-day mortality, and displays a significant improvement in discriminatory ability assessed by area 
under the ROC curve (previous model AUC = 0.647, new model AUC = 0.739, p<0.001). 
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

1. INTRODUCTION 

Bayesian networks are a set of probabilistic models and can 
be used to create diagnostic models for diseases (Andreassen 
et al. 1996; Sadeghi et al. 2006; Schurink et al. 2007; Kariv et 
al. 2011). These models can also provide advice on treatment 
selection, provided they are accompanied by decision theory 
and utility functions (Hejlesen et al. 1997; Andreassen et al. 
1999; Leibovici et al. 2000). 

A Bayesian network can be represented graphically by a set 
of nodes, linked together by arrows. The nodes themselves 
represent stochastic variables. The arrows represent causal 
relationships between the variables, a requirement for the 
network to provide plausible reasoning (Pearl 1988), and the 
reason they are also referred to as Causal Probabilistic 
Networks or CPNs (Andreassen et al. 1991). Numerically, a 
CPN consists of a set of conditional probability tables 
defining the relationships between a node and its parent(s). 
The task of constructing a CPN therefore consists of 
specifying the graphical structure and the set of associated 
conditional probabilities. Nodes are not limited to 
representing observable events such as blood pressure or 
temperature measurements, but can also represent latent 
concepts such as diagnoses or prognoses which are not 
observed, but still of interest. Once constructed, the CPN is 
used to update the probability distributions for the 
unobserved variables when evidence is inserted into the CPN. 

CPNs are ideal models for the fusion of data and knowledge, 
which may be represented by patient databases and the 
combination of expert opinion and reports in the scientific 
literature, respectively. Any or all of these sources of 
evidence may be used in the construction of a CPN. 
Throughout the construction process, the conditional 
probabilities themselves may be considered stochastic 
variables. The value of the semi-formal approach of using 
knowledge to assign a priori distributions has been 

demonstrated empirically through the success of the Treat 
decision support system (Andreassen et al. 2005; Paul et al. 
2006). Treat aids in decision-making regarding diagnosis and 
optimal treatment of acute infections. 

The CPN model of Treat is large with close to 6000 nodes. 
The severity of a patient’s illness is assessed by a small 
section of the model, approximately 40 nodes. Figure 1 
presents a framework for the development of this network, 
referred to as the “Sepsis CPN”. The individual phases are 
described in the literature; the initial specification of the 
model (Figure 1, phase I) where all observable nodes were 
discrete stochastic variables (Leibovici et al. 2000), known as 
the Discrete Sepsis CPN (D-Sepsis CPN), and the subsequent 
development of model with continuous variables (Figure 1, 
phase II), the Continuous Sepsis CPN (Ward et al. 2014). 
Although the conversion to continuous variables was able to 
solve some of the shortcomings of the discretization in the D-
Sepsis model, the model requires tuning. The C-Sepsis CPN 
has been tuned manually, using a combination of knowledge 
gleaned from the literature and expert opinion, however this 
process is limited in terms of what can be reasonably 
achieved. 

The C-Sepsis CPN can be further improved by 
supplementing the manual methods used in its development 
with machine learning from case databases. In this case, we 
take the sub-network of the C-Sepsis CPN that does not 
include respiratory parameters. We recognize in the Treat 
network that oxygen saturation, shortness of breath and 
respiratory rate are affected differently by lung- and other 
infections, and that without incorporating any knowledge of 
the site of infection, it does not make sense to include these 
parameters. The purpose of this paper is to present a method 
for tuning the sepsis CPN to predict all-cause 30-day 
mortality using a database of real patient cases. The new 
model is internally validated by testing its ability to predict 
30-day mortality. 
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Fig. 1  Sepsis CPN development framework. Phase I describes the development of the discrete sepsis CPN (D-Sepsis CPN), 

phase II the continuous sepsis CPN (C-Sepsis CPN) and phase III the development of the learned sepsis CPN (L-Sepsis 
CPN) through formal learning methods - the subject of this paper 

2. METHODS 

In this paper, we describe the modification of the C-sepsis 
CPN into the Learned Sepsis CPN (L-Sepsis CPN) (Figure 1, 
Phase III of the development framework). This is the final 
step of our sepsis CPN development framework, with the 
result being the L-Sepsis CPN, or from the network 
constructor’s perspective: the posterior distributions. For the 
purpose of this paper, the Continuous (C-) Sepsis CPN is 
regarded as the specification of a prior conditional probability 
distribution for the observable variables. Figure 2 shows an 
overview of the L-sepsis CPN. The non-infectious systemic 
inflammatory response syndrome (NISIRS) and sepsis 
represent two syndromes, the severity of which we describe 
using five states; no, mild, moderate, severe and critical. 
These states can also be thought of as the degree of activation 
of the immune system. Each of these severities is associated 
with a mortality rate. The NSIRS and sepsis nodes are linked 
to the infection variables, which we describe with individual 
parameter distributions, through a set of factor nodes. The 
specific structure of the sepsis CPN is described in the 
literature (Leibovici et al. 2000; Andreassen et al. 2005; 
Ward et al. 2014). 

 
Fig. 2  Schematic view of the sepsis CPN identifying where 

automatic learning is to take place. 1 Learning the 
weights for the composite parameter distributions. 2 
Learning the weights of the NISIRS severities across 
the intermediate factors. * denotes conditional 
probability tables defined prior to learning based on 
the C-Sepsis CPN and/or the literature. NSIRS: Non-
infectious Systemic Inflammatory Response 
Syndrome 

To prepare the L-Sepsis CPN for learning, structural changes 
were made. One issue with the C-Sepsis CPN is that some of 
the literature-derived distributions overlap greatly, which 
mean that they are difficult to use for classification. 
Additionally, the individual Gaussian distributions defined 
for each severity state meant that very large odds ratios were 
seen for outlying parameter values. Our previous attempts at 
learning have taught us that it is difficult to learn individual 
Gaussian distributions for each severity state of sepsis. 
Instead of doing this, we create a semi-discrete environment 
where a set of Gaussian curves roughly corresponding to 
pathophysiological states covers the region of interest for a 
given variable. Instead of learning the distributions 
themselves, we learn how each sepsis state spreads itself over 
the set of defined distributions, creating multi-modal or 
composite distributions. 

Our learning process can be defined as partially supervised. 
We cannot observe the states of the NISIRS and sepsis nodes 
as such; however we can observe something to which the 
severity states of both are linked: 30-day mortality. The 
explicit definition and unobservable nature of the non-
infectious SIRS also creates identifiability issues when it 
comes to learning. To overcome this issue, we choose to 
learn in a stepwise fashion, learning first the distributions for 
patients with infection, and then those without infection. 
Learning is carried out using the Expectation-Maximisation 
(EM) method (Lauritzen 1995). 

A 10-fold cross-validation is performed as an internal 
validation in order to ensure that the learning method is 
robust. The learned network is assessed for its discriminative 
ability using the area under the receiver operating 
characteristic (ROC) curve. The performance of the L-Sepsis 
CPN is compared to that for Treat with the C-Sepsis CPN. 
Calibration of the full learned model is assessed using the 
Hosmer-Lemeshow statistic and calibration curve. 

Descriptive statistics and significance testing for the data was 
carried out using SPSS (Version 22, IBM Corporation). 
Continuous variables were analysed using one-way ANOVA, 
and categorical variables with the Pearson Chi-squared 
statistic. Automatic learning was performed using the EM 
learning algorithm within Hugin (Version 7.6 (x64), Hugin 
Expert A/S). ROC-analysis was also undertaken in SPSS. 
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