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Abstract: The policy iteration algorithm (PIA) is a quasi non-identifier approach of nonlinear
optimal control based on a reinforcement learning and iterative algorithm in order to solve
the Hamilton-Jacobi-Bellman (HJB) equation. The synthesized state-feedback controller cor-
responding to the converged solution should be applicable for the control of cardiopulmonary
system. In this article, the simulation results for the control of oxygenation were carried out
using a simplified first-order model with time delay based on porcine dynamics. The distinctive
results of oxygenation control can then be achieved based on the proposed control strategy. In
addition, the practical example of water level for interacting three-tank system, which has the
nonlinear dynamics similar to that of the oxygenation, was implemented in order to prove the
concept of this control scheme.
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1. INTRODUCTION

Oxygenation is one of the key parameters for monitoring
and control in intensive care and critical care medicine,
especially for patients with acute respiratory distress syn-
drome (Pomprapa et al. (2014b, 2015)). In such critical sit-
uations of oxygen deficiency, oxygen therapy is required by
adjusting the fraction of inspired oxygen (FiO2) in order to
maintain tissue and brain function (Claure and Bancalari
(2013)). Those patients require not only the stabilization
but also an improvement of the oxygenation, which can
be measured in terms of arterial oxygen tension (PaO2)
or arterial oxygen saturation (SaO2) (Pomprapa et al.
(2014a)). Therefore, we focus on hypoxia management,
which results in a single-input single-output (SISO) system
during mechanical ventilation therapy. In this article, FiO2

and SaO2 are regarded as the input and output variables
of the system, respectively.
Because of the complexity in biomedical systems such as
oxygenation dynamics, nonlinearities and uncertainties are
common in control practice. In addition, a mathematical
model describing the system is difficult to identify accu-
rately for individuals under time constraint, leading to a
great challenge in the control strategy. The PIA has come
into our attention in this particular application because
it uses only partial knowledge of the system dynamics
(Vrabie et al. (2009); Vrabie (2009)), namely only the
knowledge of input dynamics with all accessible states.
PIA is classified as a reinforcement learning approach with
the actor-critic architecture, where an actor subsystem
performs the optimal action in each state and a critic sub-
system evaluates the long-term performance for each state
(Sutton et al. (1992)). Therefore, this technique is mainly
based on a two-step iteration, namely policy improvement

and policy evaluation. These steps should be carried out
iteratively until obtaining the converged optimal solution
(Vamvoudakis et al. (2009)). This technique should then
be suitable for oxygen therapy during the critical time,
which requires neither a complete mathematical model nor
an implementation of system identification.
For a linear system, the optimal solution can be achieved
by optimizing a Hamiltonian function based on an infi-
nite horizon optimal control problem, so called the well-
known linear quadratic regulator (LQR) problem with
state feedback structure, and the solution can be derived
by solving the algebraic Riccati equation (ARE). How-
ever, for a nonlinear system, the Hamilton-Jacobi-Bellman
(HJB) equation has to be solved to obtain the estimated
optimal solution, instead of the ARE, which serves as a
foundation of this technique in synthesizing a dynamic
controller. The PIA controller has been applied in some
practical examples: a DC-DC converter (Wernrud (2007)),
a power plant for the optimal-load-frequency controller
(Wang et al. (1993)), a hybrid system of a jumping robot
(Suda and Yamakita (2013)), a double-link pendulum for
swing-up control and an adaptive steering control of a
tanker ship (Xu et al. (2007)). Therefore, the PIA should
work out in a closed-loop control of oxygenation using
mechanical ventilation therapy. In addition, a proof of
concept for the performance of this technique is imple-
mented in a computerized nonlinear interacting three-tank
system for the control of water level. The resulting control
performance is also demonstrated in this work.
This particular contribution is organized as follows. It be-
gins with the control system design in section 2 to provide
the mathematical foundation of the PIA technique for the
nonlinear optimal control based on the HJB equation. In
section 3, modelling and control of oxygenation is proposed
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based on a first-order time delay. Furthermore, a practical
implementation of the control algorithm is given in section
4 based on the control of water level for the nonlinear
three-tank system. A discussion is intensively provided in
section 5 and the article ends with the conclusion in section
6.

2. CONTROL SYSTEM DESIGN

2.1 Nonlinear Optimal Control Based on the HJB Equation

Let us consider a continuous-time nonlinear dynamical
system in the following form

ẋ(t) = F(x(t), u(t)), (1)

where x(t) ∈ χ ⊆ Rn is the states of the system, u(t) ∈ υ
⊆ R represents the control input, and F : χ× υ × R+ → Rn

is Lipschitz continuous on χ× υ, such that the state vector
x(t) is unique for a given initial condition x0. It is assumed
that the system is stabilizable.
The control objective is to minimize the cost function
satisfying eq. (2), which is used as a policy evaluation.

V(x0) =

∫ ∞

0

r(x(τ), u(τ))dτ, (2)

where r(x,u) is defined by Q(x) + uTRu, Q(x) ∈ R is
positive definite and continuously differentiable (i.e. if
x = 0, then Q(x) = 0 and Q(x) > 0 for all x), and R ∈ R
is a positive definite matrix for a penalty or weighting of
the control input.
This particular system dynamics can be written in an
affine form, as follows.

ẋ(t) = f(x) + g(x) · u (3)

Let us define the Hamiltonian of the control problem in
eq. (4).

H(x, u,V∗
x) = r(x(t),u(t)) +∇xV

∗(f(x(t))

+g(x(t))u(t)),
(4)

where the optimal cost function ∇xV
∗ satisfies the follow-

ing HJB equation and ∇x denotes the partial differential
in x.

minuH(x, u,∇xV
∗) = 0 (5)

The optimal solution is given by

u∗ = −1

2
R−1gT(x)∇xV

∗(x), (6)

which is an algorithm for policy improvement (Ohtake and
Yamakita (2010)). Note that, for a linear continuous-time
system, the HJB equation becomes the well-known Riccati
equation (Vamvoudakis et al. (2009)) and the converged
solution is equivalent to the response from a LQR con-
troller.

2.2 Policy Iteration Algorithm

The cost fuction of eq. (2) can be rewritten in the form of
eq. (7).

V(x(t)) =

∫ t+T

t

r(x(τ), u(τ))dτ +V(x(t + T)), (7)

where V(0) = 0. Hence, eq. (7) is numerically solved for
V(x(t)) as a function of time and the control signal u∗ can
be updated based on eq. (6). The function of V(x(t)) can

then be estimated by either a linear function or a nonlinear
function in terms of x(t), so that the unknown parameters
can be computed by using a simple least squares algorithm,
a gradient descent algorithm, a recursive least squares
algorithm (Vrabie et al. (2009)) or using a neural network
(Bhasin et al. (2013)) for the parameter estimation. The
proof of guarantee convergence for the control policy as
well as stability are given by Vrabie et al. (2009) in case of
a linear system and by Vamvoudakis and Lewis (2010) in
case of a nonlinear system. The block diagram of PIA is
shown in Fig. 1 with internal actor and critic subsystems
of state feedback architecture.

Fig. 1. Block diagram of the policy iteration algorithm
with actor and critic subsystems of full state feedback
structure.

In summary, the method of PIA can be formulated in the
following sequential steps:

(1) Assign an initial controller that can stabilize the
system.

(2) Compute the time response of V(x(t)) numerically,
where V(0) = 0.

(3) Based on the response of V(x(t)) in the time domain,
estimate the unknown parameters in the evaluation
function by using the least squares algorithm (Vrabie
et al. (2009)) or using other parameter estimation
techniques.

(4) Update the control policy of eq. (6) as a policy
improvement.

(5) Return to compute the time response of V(x(t)) at
step (2) and continue the sequential steps for policy
evaluation, if the estimated parameters are not con-
verged or the norm between current estimated param-
eters and previous estimated parameters is more than
a predefined value (ε). Otherwise, an iteration of the
updated control law should be stopped.

The prerequisite for this algorithm is to have an initial
controller that can stabilize the system. In practice, a
simple proportional-integral (PI) controller may be used as
the controller for the first evaluation of the system perfor-
mance. Thereafter, PIA will optimize the Hamiltonian cost
function at every iteration to achieve the extremal cost for
the underlying nonlinear system. With these steps, online
implementation can be realized to have an optimal con-
troller for the complicated nonlinear plant with unknown
internal dynamics.
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