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Abstract: Assuming the most common control structure for zero and primary control of
inverter-based microgrids, i.e. three cascades with the highest one being droop control, the
potential benefit of optimizing the control parameters is investigated. A detailed nonlinear
plant model is derived that compactly describes the dynamics in local dq-coordinates. Then,
the design of the decentralized, cascaded controllers is converted into the problem of designing
one centralized static controller with structural restrictions. To tune the controller parameters,
a direct method for pole-assignment is used. The simulations show that the oscillations in the
transient response can be reduced greatly by choosing appropriate control parameters, while the
speed of the system is restricted due to the low-pass filtering of the power for primary control.
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1. INTRODUCTION

The stability analysis of electricity grids has been of
great research interest for a long time. Yet relatively few
textbooks or publications actually treat the selection of the
control parameters, and even fewer question the typically
used control structure. This might be due to the fact that
for large power systems the detailed model often is not
available. But when considering microgrids, this should
not be an issue. Another reason might be the difficulties
arising due to the decentralized nature of grid control. And
yet, the occurring problems have long been tackled by the
control society, e.g. Litz (1983), Konigorski (1988), Siljak
(1991), Lunze (1992).

Combining the modeling approaches broadly used in power
system stability analysis and the results from the control
society on the design of decentralized controllers, we tune
the controller parameters of a microgrid to improve its
transient behavior.

2. BASIC ASSUMPTIONS AND NOTATION

Assume a symmetrically constructed power system that is
symmetrically operated. Then, only symmetrical signals
occur. Let three-phase AC signals be written in vector

notation: xabc = (xa xb xc)
T
. Let VN be the set of vertices

and EN the set of edges of the network. Let I ⊂ VN be
the set of vertices to which inverters are connected and
VL ⊂ VN the set of vertices to which loads are connected.
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After power flow calculation, edges are added to represent
the loads. Denote the set of these edges EL. They are
connected to the ground node, which is the only element of
VL0. The sets of vertices and edges of the resulting network
used for the dynamical analysis are V = VN ∪ VL0 and
E = EN ∪ EL. Let | • | be the cardinality of the set •. We
assume following numbering of the busses

I = {1, . . . , |I|}
VL = {|I|+ 1, . . . , |I|+ |VL|}

VN \ I \ VL = {|I|+ |VL|+ 1, . . . , |VN|}
VL0 = V \ VN = {|VN|+ 1} = {|V|}

and of the edges

EN = {|V|+ 1, . . . , |V|+ |EN|}
EL = E \ EN = {|V|+ |EN|+ 1, . . . , |V|+ |E|}.

With this consecutive numbering of nodes and edges,
currents injected into vertices and voltages at vertices,
which have a subscript i ∈ V, and voltages over edges
and currents flowing through edges, which have a subscript
i ∈ E, can easily be distinguished. Let the subscripts
I,VL,VN,VL0,V,EN,EL,E denote ordered column vectors
from the corresponding set. For example, the voltages at

the vertices are denoted uT
abc,V :=

[
uT
abc,1 . . . uT

abc,|V|

]
.

Define the function diag, which creates a diagonal ma-
trix from its argument. Let the Kronecker product be
denoted by ⊗, the Hadamard product by ◦ and the inverse
Hadamard product by A◦(−1) := (1/aij). Define the dq-
transformation

Tdq(θ) :=√
2

3

[
cos (θ) cos

(
θ − 2π

3

)
cos

(
θ + 2π

3

)
− sin (θ) − sin

(
θ − 2π

3

)
− sin

(
θ + 2π

3

)
]

(1)

and the inverse dq-transformation

Tabc(θ) := Tdq(θ)
T (2)

such that
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xdq = [xd xq]
T
= Tdq(θ)xabc (3)

Tabc(θ)xdq = xabc.

3. COORDINATE SYSTEMS

The coordinate systems are chosen as described in typ-
ical textbooks on the modeling of electricity networks,
e.g. Kundur (1994), Anderson and Fouad (2003), Sauer
and Pai (1997). The network will be described in dq-
coordinates revolving with the angular velocity ω̆. The
transformation angle is

θ = mod2π(ω̆t) ∈ T, (4)

where T := {x ∈ R|0 ≤ x < 2π} and the operator mod2π
is used so that θ ∈ T. Signals in network dq-coordinates
will be underlined. Each inverter is described in its own
dqi∈I-coordinate system. The rotation frequencies ωi∈I

of these local coordinate systems are set by the power
controllers of the respective inverters. Then, the angle
between the global network dq-coordinates and the local
dqi-coordinates can be tracked by integration

δi(t) = δ0,i +

∫ t

0

(ωi(τ)− ω̆)dτ, i ∈ I, (5)

where δ0,i is the value of δi at t = 0. Since the signals
in the final equations will be in local coordinates, signals
in local coordinates will not specifically be marked. The
transformation from local coordinates of inverter i to
global coordinates is a rotation by δi

Ti∈I :=

[
cos (δi) − sin (δi)
sin (δi) cos (δi)

]
. (6)

Define the block-diagonal transformation matrix

TI := diag
(
T1, . . . ,T|I|

)
. (7)

Then, the voltages and currents at the inverter nodes can
be transformed from local to global coordinates by

iI = TIiI, uI = TIuI. (8)

4. NETWORK MODEL

Let the electrical network be modeled by concentrated
parameters. Conduct a power-flow calculation for a given
operating point and compute the typical impedances as
load models. To derive a dynamical model of the network
with loads, we use the single-phase representation and
Matlab’s power statespace command. This way, a state
space model with voltages as input ua,I and currents as
output ia,I is obtained:

ẋa = Axa +Bua,I (9)

ia,I = Cxa.

Denote the order of the model n. First, extend the model
to represent all three-phases

ẋabc = [A⊗ I3]xabc + [B⊗ I3]uabc,I (10)

iabc,I = [C⊗ I3]xabc.

Then, transform the model to global network dq-coordinates,
which we denote by an underline, c.f. section 3. To do so,
apply the inverse dq-transformation (3)

ẋabc = [A⊗ I3] [In ⊗Tabc]x (11)

+ [B⊗ I3]
[
I|I| ⊗Tabc

]
uI

iabc,I = [C⊗ I3] [In ⊗Tabc]x

and multiply the first equation of (11) by In⊗Tdq and the
second equation by I|I| ⊗ Tdq from the left. Considering

the mixed-product property of the Kronecker-product, this
leads to

[In ⊗Tdq] ẋabc = [A⊗ I2]x+ [B⊗ I2]uI (12)

iI = [C⊗ I2]x.

To compute [In ⊗Tdq] ẋabc consider

ẋ =
d [In ⊗Tdq]xabc

dt
(13)

=

[
In ⊗

[
0 ω̆
−ω̆ 0

]]
x+ [In ⊗Tdq] ẋabc.

Inserting (13) into (12) leads to

ẋ =

[
A⊗ I2 + In ⊗

[
0 ω̆
−ω̆ 0

]]
x+ [B⊗ I2]uI (14)

iI = [C⊗ I2]x,

which is the network model in dq-coordinates. Since the
inverters will all be described in local dq-coordinates,
transform input and output of (14) to local coordinates,
too. Application of (8) yields

ẋ = Ãx+ B̃TI(δI)uI (15)

iI = T−1
I (δI)C̃x,

where we abbreviated

Ã :=

[
A⊗ I2 + In ⊗

[
0 ω̆
−ω̆ 0

]]
,

B̃ := [B⊗ I2] , C̃ := [C⊗ I2] .

In this formulation, δI is an input of the network model.
Since δI will not be needed anywhere else, we augment the
model by (5) which results in a model of the network with
inputs ωI, uI and output iI:

ẋnet =
d

dt

[
x
δI

]
=

[
Ãx+ B̃TI(δI)uI

ωI − 1|I|ω̆

]
(16)

iI = T−1
I (δI)C̃x.

5. INVERTER AND PLANT MODEL

Fig. 1 shows the block diagram of the coupled inverters.
The coupling inductance has been modelled as a line of
the network. Therefore, the inverter node vi∈I is actually
inside the inverter and no loads are connected to these
vertices, which justifies our indexing. Subscript f is used
to denote the remaining filter parameters Lf,i, Cf,i, the
current flowing through the filter inductance if and the
voltage over the filter uf. Reference values given by the sec-
ondary controller are denoted with superscript o. Since the
secondary controller is not investigated, these inputs are
assumed to be constants corresponding to the operating
point of the network. Setpoints from inner control loops
are denoted by superscript *. The absolute value of the
voltage is denoted by û. Subscript m is used to differentiate
low-pass filtered measured values from the actual values.

Before focusing on the controllers, the inverters must
be modeled. As customary in these kinds of models, we
neglect the switching process of the inverters: uf = u∗

f . The
relationship between voltage decline and current flowing
through the filter is described by

uabc,f,i − uabc,i = Rf,iiabc,f,i + Lf,i
diabc,f,i

dt
(17)

duabc,i

dt
=

1

Cf,i
(iabc,f,i − iabc,i) , i ∈ I. (18)
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