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Abstract: This contribution illustrates an approach for the generation of a linear dynamic
discrete time model for the short term prediction of the room temperature in a single
conference room. The model is extracted from recorded measurement data by means of system
identification. After a brief description of the considered room and the modeling approach the
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1. INTRODUCTION

Approximately 40% of the energy consumption in Ger-
many and the United States is caused by the building
sector [see BMWi (2014), McQuade (2009) resp.]. Due to
temporal unavailability of renewable energy sources, an in-
creasing use of thermal and electrical storage technologies,
and improved thermal insulation of the buildings a predic-
tive control strategy is becoming increasingly important
for efficient building operations.

Because model predictive control (MPC) has proven its
ability to solve complex control problems cost-effectively in
areas such as chemical process automation, it has attracted
a lot of attention in building automation as well. Thus in
recent years many approaches have been made to apply
MPC to heating, ventilation, and air conditioning (HVAC)
[Gyalistras et al. (2010), Oldewurtel et al. (2010), Paschke
et al. (2016)] or also to energy storage and distribution
systems [Ma et al. (2009), Pŕıvara (2013), Lamoudi et al.
(2012)], where saving potentials ranging between 5% and
40% had been reported.

Although many contributions have been made which
clearly demonstrate the advantages of MPC in building
automation by means of simulation studies, actual imple-
mentations are still rare. One of the major drawbacks for a
wide-ranging applicability seems to be the time-consuming
modeling, because the MPC-model needs to be adapted to
each situation individually. Furthermore in many practical
situations a physically motivated modeling using energy
balance equations is problematic due to unknown parame-
ters, such as heat capacities and heat transfer coefficients.
These and other problems lead to the fact that practical
usage of MPC still isn’t profitable in many cases from an
economical point of view.

Considering the increasing availability of sensor and data
storage technologies in modern buildings, it seems promis-
ing to use measurement data for the generation of MPC
models by employing methods from machine learning and
system identification. Empirical modeling and parameter
estimation for building systems had been studied exten-
sively during the last decades [see for example Penman
(1990), Madsen and Holst (1995) or Kramer et al. (2012)]
and has regained attention due to the efforts to apply
MPC in the building sector [Žáčeková et al. (2011), Pŕıvara
(2013), Sturzenegger et al. (2014)].

Besides other topics, identification of simplified thermal
and hygric room models has been of interest consistently
[Penman (1990), Madsen and Holst (1995), Sturzenegger
et al. (2014)]. In many references results are presented that
indicate good simulation performance for selected data,
which is gathered from experimental setups. However the
question whether the model performs well in real-time
applications often remains ignored. Furthermore for MPC-
applications the model requires good prediction perfor-
mance, i. e. it should produce low errors within a certain
prediction horizon [see Ljung (2012) Sec. 3 for discussion
of simulation and prediction]. Since the prediction error
is a statistical quantity, an appropriate analysis should be
performed to assess the quality of the model.

In this contribution we want to share our identification
results of a thermal model for a conference room, where the
data which is used for the identification was gathered from
a non-experimental setup. This means that the room was
in normal operation. The article is organized as follows:
Section 2 gives a short overview of the considered room
and its relevant hardware equipment. In Section 3 we
discuss our modeling approach including the selection of
model inputs and outputs, the chosen model structure and
the identification criterion. The next chapter presents a
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detailed discussion of the prediction performance of the
identified model, while in the last section a summary of
our results and the focus of next research topics are given.

2. SETUP DESCRIPTION

2.1 Description of the Room

The considered conference room is located in the ground
floor of Fraunhofer IIS/EAS in Dresden and is part of a
massive office building, which was constructed in the late
1950’s. The size of the room is approx. 9.2m ×5.7m and it’s
automation system consists of the following components:

• Temperature, humidity, and air quality sensors
• Three separate windows aligned to the west and one
inner door, all equiped with binary switching contacts
to detect opened state

• Binary occupancy sensor
• Three radiators with local PID controllers (unknown
parameters) sharing a common heating setpoint

• Three fancoils at the ceiling of the room with three
discrete cooling levels controlled by 3 point propor-
tional controllers sharing one cooling setpoint

• External electric blinds
• Two separate heat meters for measuring heating and
cooling power supplied by the radiators and fancoils
resp.

• Central database for storing timeseries data of all
available sensors, actuators, and setpoints

A schema of the considered room is depicted in Figure 1.

Fig. 1. Schema of considered conference room

2.2 Description of the Data

As already mentioned all available time series data of
the conference room is stored in a central database and
can be used for analysis and modeling. Additionally we
used measurements from a local weather station located
approximately 3km from the considered building, which
provided values for the outside temperature and the global
radiation sampled all 15min. All setpoints, sensor and
actuator measurements are logged on change, meaning
that a data sample is stored only if it has changed with
respect to its previous value. Because of noise some sensors
change their values rapidly thus the sampling time was
limited to a minimum of 1min.

We considered a one year batch of data which was gathered
between Sept. 1st, 2015 and Aug. 31st, 2016. Because
of obvious logging errors, especially stuck sensor values,

it was necessary to preselect the data leaving at most
51% of the data for modeling and further analysis only.
Furthermore using the binary occupancy sensor, we were
able to determine that the room was occupied approx. 11%
of the overall time span.

Figure 2 illustrates an 18h long exemplary batch of data
recorded in November 2015. Observe that the room tem-
perature sensor shows significant quantization noise with
a step size of approx. 0.32K. Furthermore we’d like to
mention that both heat meters provide measurements of
the volume flow, as well as the supply and return temper-
atures of the heating medium, whereof the heating power
can be calculated. Notice that the measurements of the
heating power show erroneous peaks at the beginning of
each heating period [see Fig. 2], which have been ignored
throughout the paper and are caused by the measurement
principle. The reason for this behavior is that the difference
of the supply and return temperature, which are measured
before and after the radiators, is comparably high at the
beginning of each heating period, because cool water is
stored in the radiators. Once they had been flowed com-
pletely with ”fresh” heating medium, the measurement of
the heating power drops instantly and displays reliable
values.
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Fig. 2. Recorded data from November 2015

3. IDENTIFICATION APPROACH

3.1 Modeling Assumptions and Constraints

The goal of this paper is to obtain a strategy for the
identification of short term prediction models for the tem-
perature within a single room. Although we pursue an
empirical modeling approach, it is always helpful to exam-
ine the actual physical nature of the system using energy
balance equations. A simplified differential equation for
the room temperature ϑr(t) can be stated as
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CR
dϑr(t)

dt
=

Nw∑
i=1

αiAi

(
ϑw,i(t)− ϑr(t)

)
+ Q̇h(t)

+Q̇c(t) + Q̇out(t) + Q̇rad(t) + Q̇occ(t),

(1)

where the meaning of the symbols is described in Table 1.

Table 1. Explanation of symbols used in eq. (1)

Symbol Description

ϑr Room temperature
ϑw,i Temperature of wall i

ϑout(t) Outside temperature
CR Heat capacity of the air in the room
Nw Number of walls of the room
αi Heat transfer coefficient of wall i
Ai Surface area of wall i

Q̇h Heating power supplied by the radiators

Q̇c Cooling power supplied by the fancoils

Q̇out Combined heat flux caused by the difference
of room and outside temperature ϑout(t)

Q̇rad Solar gains due to radiation

Q̇occ Heat gains due to occupancy and electrical
equipment

Notice that equation (1) should not be regarded as a gen-
eral model of the temperature dynamics. More precisely
speaking, we will not expect that the actual identified
model will be of order one necessarily, because of it’s
strongly simplified nature. Moreover it contains unknown,
somewhat abstract quantities such as the temperature of
the walls ϑw,i(t), which can not be measured and again
depend on temperatures of other rooms. Because of these
couplings, a physically based modeling approach, such
as the ”RC-modeling” which tries to approximate each
thermal storage [walls, air volumes, etc.] by a network of
resistances and capacities [see Oldewurtel et al. (2010),
Kramer et al. (2012)], leads to a complex model with
many parameters, which are not suited for identification
purposes. Because of these restrictions equation (1) should
be regarded as basis of further discussion, and not as an
actual model used for identification.

Having mentioned these preliminary remarks, we’d like to
motivate our modeling approach, which will be described
in the next section in detail. Besides the choice of an
appropriate model structure, one of the most important
decision for system identification is the selection of the
inputs for the model, which in statistical literature often
refers to the choice of suitable exogenous variables. As
suggested in equation (1) we considered 6 main heat
sources [see Eq. (1)], from which only 4 will be used as
explicit inputs for the identification:

First, as it is clear intuitively, we selected the measured
heating and cooling power Q̇h(t) and Q̇c(t) as the first
two inputs for the model. Furthermore on the basis of
manual data inspection and prior knowledge, we deduced
that heat fluxes caused by the difference of outside and
room temperature Q̇out should be taken into account as
well. Because of its expected linear relation to the outside
temperature we chose ϑout(t), which was measured at the
weather station, as a 3rd input to the model. Furthermore
we saw from the measurements that the solar radiation
entering through the windows has a noticeable influence
on the room temperature. We thus included a 4th input

Q̇rad(t) =




Q̇glob(t)

cosΘ(t)

sin γs(t)
, for Θ(t) ≤ π/2

0, otherwise
, (2)

with Q̇glob(t) being the global radiation, and Θ(t) the angle
between the normal vectors of the window and the vector
pointing into the center of the sun. It can be calculated
from

cosΘ(t) = cos γs(t) sin γw cos(αs(t)− αw)
+ sin(γs(t)) cos γw

. (3)

Here αs(t) and γs(t) describe the azimuth and elevation
of the sun and are functions of time and geographic
location [see Quasching (2013)]. The angles αw and γw
specify orientation of the window surfaces with respect to
geographic north and the surface of the earth and are thus
known prior to identification 1 .

The heat fluxes caused by the occupancy and the walls are
not explicitly taken into account as inputs to the model,
which in the first case is due to the fact that the number
of occupants in a room is usually unknown. We thus
regarded Q̇occ(t) as an unknown disturbance to the model.
However since we can use the binary occupancy sensor
we can suppress this disturbance during identification by
appropriate preselection of the data. The heat fluxes of the
walls were treated as another unmeasurable disturbance.
However some important assumptions had been made to
cope with their influence: Since the main goal of the desired
model is to provide accurate short term predictions for
MPC applications, we will assume the disturbances as
slowly varying with respect to the prediction horizon,
or differently speaking as low frequency disturbances 2 .
The chosen model should thus be able to describe and
reconstruct this disturbance during real time application.

3.2 Model Selection and Identification Criterion

Having defined the modeling assumptions and constraints,
we proceeded with the model selection and definition of
the identification criterion. Due to the fact that the data
is measured at discrete time steps k (t = kts, ts being the
sampling time). We thus assumed a linear MISO model

y(k) =
m∑
i=1

Gi(q, θ)ui(k) +H(q, θ)e(k), (4)

where in our case the output is defined as y(k) := ϑr(k)

and the m = 4 inputs are chosen as u(k) := [Q̇h(k), Q̇c(k),

ϑout(k), Q̇rad(k)]
�. Furthermore q denotes the time shift

operator, thus qy(k) = y(k + 1), and e(k) is a sequence
of uncorrelated random numbers with zero mean and
unknown variance σ2

e . The unknown transfer functions

1 The distinction of cases in equation (2) is due to the fact, that for
angles Θ(t) > π/2 the sun is not visible from the windows of the room
and thus no direct radiation can enter through the windows. Notice
furthermore that in some references the global radiation is split up
to direct and diffuse radiation [see Quasching (2013)], which was
ignored throughout the paper because of its small expected influence.
2 In statistical literature these disturbances are often called ”drifts”
or ”trends” [Box et al. (2008)].
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