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Abstract: In this paper, we consider the H,, control problem of a coupled transport-diffusion
system related to parallel-flow heat exchange process. It is shown that, by using our previous
result for a single diffusion system, the H., control problem can be solved by constructing a
residual mode filter (RMF)-based controller which is of finite-dimension.
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1. INTRODUCTION

Since the beginning of the 1980’s, the design method
of finite-dimensional stabilizing controllers for distributed
parameter systems has been proposed by many re-
searchers. In general, when one constructs a finite-
dimensional model for a given distributed parameter sys-
tem and applies a finite-dimensional controller designed
for the model to the original infinite-dimensional system,
spillover phenomenon may be occured by the influence
of unmodeled modes. Sakawa (1983) first introduced two
kinds of finite-dimensional observers for linear diffusion
systems to reduce the influence of unmodeled modes for
the closed-loop system with the finite-dimensional con-
troller. After that, Balas (1988) called one of them as the
residual mode filter (RMF, for short), and clarified that the
RMF plays an essential role for the construction of finite-
dimensional stabilizing controllers. On the other hand,
Nambu (1985, 2005) gave the design method of infinite-
dimensional stabilizing controllers applicable to a large
class of linear parabolic systems, and further accomplished
finite-dimensionalization of the controllers. Recently, the
author showed that the method based on RMF by Sakawa
(1983) was also applicable to a coupled transport-diffusion
system related to chemical reaction process (Sano (2012)).

On the other hand, as for H,, controllers for distributed
parameter systems, the research has been progressed
since the beginning of the 1990’s. The design method of
infinite-dimensional H,, state feedback/output feedback
controllers was first studied by van Keulen (1993). How-
ever, the algorithm was not feasible because one needed to
solve two kinds of operator Riccati equations. After that,
the design method of finite-dimensional H,, controllers
for a single diffusion system was given by Sano & Sakawa
(1999), in which the RMF was used in the output feedback
controller design. The purpose of this paper is to show that
our result is applicable to a coupled transport-diffusion
system related to parallel-flow heat exchange process.
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2. SYSTEM DESCRIPTION AND FORMULATION
2.1 System Description

We shall consider the following coupled transport-diffusion
system related to parallel-flow heat exchange process
(Fig. 1):

821 o 322’1 z
E(tw’r) =D o2 (t,l‘) - OL%(LI’)
+hy(2z2(t, ) — 21 (8, x)),

0z . 0z

+hao(z1(t, ) — 22(t, x))
+by (2)wy () + ba(z)u(t), (1)
(t,z) € (0,00) x (0,1),

Zl(tao) = 07 %(ta 1) =V,
25(t,0) = 0, ?(t,l)zo, t>0,
i

21(0,2) = z10(x), 22(0,2) = 290(x), z € [0,1],

where z1(t,x), 22(t,z) denote the temperatures of fluids
at time t and at the point = € [0,1], and w;(t) €
R denotes the disturbance added through the influence
function by (z), u(t) € R the control input added through
the influence function be(z). D > 0 is the heat diffusion
coefficient, a > 0 the fluid velocity, hi, ho > 0 the heat
exchange rates between two tubes. For system (1), let us
set the controlled output z.(t) € R? and the measured
output y(t) € R as follows:

1

T
ze(t) = /cl(x)zl(t,x)dx,u(t) ,
[O (2)
y(t) = / eo(@)ar(t, 2)da + wa(t), >0,

0

where ¢ (), co(z) are the influence functions, and ws(t) €
R denotes the disturbance included to the measurement.
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Fig. 1. Parallel-flow heat exchange process.
2.2 Formulation of the System

By defining the differential operator £ as

Lo(w) = ~DTAD 1 W) 4y, e

(0,1),

system (1) is written as

9
%(t,x) = —Lz(t,2) + hiza(t, 7),

022 (1 2) = (=L + h1 — ha)2a(t 2) + oz (£, 2)

at +b1((E)’U}1(t) +b2( )u t),
(t,2) € (0,00) x (0,1), (3)

21(t,0) =0, %(t, 1)=0,

25(t,0) = 0, %(m):o, t>0,

21(0,z) = z10(x), 22(0,2) = 2z20(x), x € [0,1].

Here, let us define the unbounded operator A as

Ap =Ly, e D(A), (4)

D(A)={p e H*(0,1); p(0) = ¢'(1) =0}.
Then, A is expressed as an operator of Sturm-Liouville
type as follows:

1 d dp(z)
(40)@) = o (00 5 + atare(o)).

w(z) =e % p(x)=De P*  q(x) = hieP",
where 8 := a/D (> 0). Therefore, the operator A becomes
self-adjoint in the weighted L?-space L%(O, 1) whose inner
product is defined by

1

(o) 5 = / p@yp(@)e P de, o € L3(0,1).

0

A has a set of eigenpairs {\i, 0;}52; in L3(0,1) such that
{¢i}32, forms a complete orthonormal system in L3(0,1).

Hence, any f € L%(O, 1) is expressed as

F=Y (f e s

=1

The eigenvalues and eigenfunctions of A are calculated as
follows:

2
i = w?D + %D + h1, pi(z) = Me%w sin w;x, (5)

1
1 1 T2
i = <+coszwi) (< \@), i>1,
2 B
where w; < wy < ---
of tanw =

< w; < --- are the solutions
f%w on w > 0. Hereafter, for the initial

condition and the influence functions, we assume that
210, 220, b1, ba, 1, ¢a € L3(0,1)(= L*(0,1)).

Then, from (3) we have the following equation:

le(t, )
P —Azi(t,) + hi2a(t, ),
21(0,-) = 210,
. 6
ngC;;, ) = (—A + hl hg)ZQ( ) + hgzl( ) ( )
+brwi () + bau(t),
22(07 ) = 220-

As for the output equation (2), we can formulate as follows:

{ ze(t) = [(e”er, 21t ) g ult)]

y(t) = <€B.02721(t7 )>ﬁ + wa(t),

(7)

t>0.

Here, by defining the bounded operators B; : R —
L%(O, 1), C;: L%(O7 1) >R (i=1,2) as

B;v = b;v,

Ci(p: <€’6.Cl‘,§0>ﬂ, (RS L%’(O71)7
system (6), (7) is written as follows:

% = —Az(t,) + hiz(t,-),

21(07 ) = 210,

dZQ (t, )
dt

v e R,

= (=A+hy —ho)za(t,:) + hazi (¢, )
+Bywi (t) + Baul(t), ®
22(0,+) = 220,

Clzl t,'
y(t) = Caz1(t, ") + wa(?).

Moreover, by defining the unbounded operator A :
[D(A)]? C [L3(0,1)]* — [L3(0,1)]?, the bounded op-
erators B; : R? — [L3(0, D], B2 = R — [L3(0,1)]?,
Ci : [L3(0,1)]> — R? C : [L3(0,1)]> —» R and the
matrices Do, Doy as

—A h1

hy —A+hy —hs |’

00 0
B9 0] B g

C1 = {%1 O}, €= [Cs 0],

A=

Dis = {ﬂ . Doy =[01],
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