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1. INTRODUCTION

We consider a parameter-dependent linear time-invariant
system

ẋ = Ax+Bp
q = Cx+Dp
p = ∆q

(1)

with x(t) ∈ Rn, p(t), q(t) ∈ Rr, where A,B,C,D are real
matrices of appropriate sizes, and where ∆ is an r × r
diagonal matrix of the form

∆ = diag [δ1Ir1 , . . . , δmIrm ] (2)

with Iri an identity matrix of size ri and r = r1+ · · ·+rm.
Assuming that the matrix A is stable, we ask whether the
system (1) remains stable for all choices δ ∈ [−1, 1]m of
the uncertain real parameters. If we consider the matrices
∆ in (2) in one-to-one correspondence with δ ∈ Rm, then
this amounts to checking wether

ẋ =
(
A+B∆(I −D∆)−1C

)
x (3)

is stable for every δ ∈ [−1, 1]m. We assume throughout
that I − D∆ is invertible for every δ ∈ [−1, 1]m, i.e.,
that (1) is robustly well-posed over [−1, 1]m. All rational
parameter variations in a nominal system ẋ = Ax can be
represented via a suitable LFT of the form (1).

Recall that the spectral abscissa of a square matrix A
is α(A) = max{Re(λ) : λ eigenvalue of A}, and that
stability of A is equivalent to α(A) < 0. The problem of
robust stability of (1) over δ ∈ [−1, 1]m can therefore be
addressed by the optimization program

α∗ = max
δ∈[−1,1]m

α (A(δ)) , (4)

where A(δ) = A + B∆(I − D∆)−1C. As soon as the
global optimum satisfies α∗ < 0, the system (1) is certified
robustly stable over δ ∈ [−1, 1]m, while a solution δ∗ of (4)
with α∗ � 0 gives a destabilizing choice of the uncertain
parameters, which may represent valuable information for
parametric robust synthesis, see Apkarian et al. (2014).

� The authors acknowledge financial support by Fondation
d’Entreprise EADS (F-EADS) and Fondation de Recherche pour
l’Aéronautique et l’Espace (FNRAE).

When α∗ < 0 every solution x(t) of (3) decays at least as
fast as eα

∗t, in which case −α∗ > 0 is also known as the
minimum stability degree of (1).

2. BRANCH AND BOUND STRATEGY

In this section we present the main ingredients of our
branch and bound algorithm for (4). The differences with
earlier work by Gaston et al. (1988), Sideris et al. (1989),
and Balakrishnan et al. (1991) are (i) the use of a so-
phisticated local solver which gives an improved lower
bound, (ii) an evaluation procedure which avoids comput-
ing explicit upper bounds, and (iii) a new element which
integrates frequency information in the setup. We will
explain these improvements as we go.

2.1 Basic setup

For every subbox ∆ =
∏m

i=1[ai, bi] of [−1, 1]m with −1 �
ai < bi � 1 we consider the subproblem

α∗(∆) = max
δ∈∆

α (A(δ)) (5)

of (4) associated with ∆. During the algorithm we main-
tain a finite list L of subproblems specified by pairwise
non-overlapping subboxes, called the list of doables. The
algorithm stops as soon as the list L has been worked off.
The list is initialized with the box [−1, 1]m. When a box
∆ ∈ L comes up for evaluation, we call a decision proce-
dure P, called a pruning test, which decides whether or
not ∆ can be pruned. When pruned, ∆ simply disappears
from the list L . When P decides that pruning is not
possible, then ∆ is divided into two successor boxes ∆′,
∆′′ of half volume, ∆ is removed from the list and ∆′,
∆′′ are added, so that L grows by one. Usually we cut
the box in two halves along a longest edge.

2.2 Lower bound

We use a local optimization method based on a bundle
trust-region strategy Apkarian et al. (2015a,b) to compute
a lower bound α � α∗ of the global optimum. Suppose the
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represented via a suitable LFT of the form (1).

Recall that the spectral abscissa of a square matrix A
is α(A) = max{Re(λ) : λ eigenvalue of A}, and that
stability of A is equivalent to α(A) < 0. The problem of
robust stability of (1) over δ ∈ [−1, 1]m can therefore be
addressed by the optimization program

α∗ = max
δ∈[−1,1]m

α (A(δ)) , (4)

where A(δ) = A + B∆(I − D∆)−1C. As soon as the
global optimum satisfies α∗ < 0, the system (1) is certified
robustly stable over δ ∈ [−1, 1]m, while a solution δ∗ of (4)
with α∗ � 0 gives a destabilizing choice of the uncertain
parameters, which may represent valuable information for
parametric robust synthesis, see Apkarian et al. (2014).

� The authors acknowledge financial support by Fondation
d’Entreprise EADS (F-EADS) and Fondation de Recherche pour
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ẋ =
(
A+B∆(I −D∆)−1C

)
x (3)

is stable for every δ ∈ [−1, 1]m. We assume throughout
that I − D∆ is invertible for every δ ∈ [−1, 1]m, i.e.,
that (1) is robustly well-posed over [−1, 1]m. All rational
parameter variations in a nominal system ẋ = Ax can be
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local optimum is attained at δ ∈ [−1, 1]m, then δ is our
candidate for the solution, called the incumbent. Since the
local solver is fast, it is re-started within ∆ whenever a
new subproblem ∆ ∈ L is evaluated. This may lead to
an improved lower bound and incumbent. The information
provided within ∆ is also used to rank the boxes in the
list of doables L . A detailed description of the local solver
can be found in Apkarian et al. (2015a,b). For the current
analysis it is enough to know that when the algorithm is
started with initial guess δ0 ∈ ∆, then it always ends with
a local maximum δ ∈ ∆ satisfying α (A(δ)) � α (A(δ0)).

2.3 Pruning test

Following standard terminology, a function α(·), defined
on boxes ∆, is called an upper bound if α∗(∆) � α(∆).
Given the current lower bound α and a tolerance ε � 0,
the standard pruning test with upper bound α(·) is

Pub :

{
if α(∆) � α+ ε then pruning ∆
otherwise not−pruning

(6)

The idea is that the decision pruning is only issued when
α∗(∆) � α(∆) � α+ ε, in which case the present incum-
bent cannot be further improved within the tolerance ε by
investigating subboxes of ∆. Hence ∆ can be eliminated.

It turns out that in order to reach the decision (6) it is not
necessary to compute an upper bound. Any method which
allows to certify that α∗(∆) � α + ε will be sufficient to
reach the same decision. This is captured by the following

Definition 1. A decision procedure P which, given a box
∆ and a reference value α on entry, and being allowed
a tolerance ε � 0, issues a decision between pruning ∆
and not−pruning is called a pruning test if the decision
pruning∆ is only issued when it is certified that α∗(∆) �
α+ ε. �

We shall use the shorthand P(∆, α, ε) = pruning, respec-
tively, P(∆, α, ε) = not−pruning. In order to succeed, a
pruning test P has to satisfy the following property:

Definition 2. A pruning test P is consistent if for every
ε > 0 there exists η > 0 such that for every box ∆
with diameter < η and for every α � 0 the decision
P(∆, α∗(∆) + α, ε) = pruning is made. �

The explanation is that sufficiently small boxes will get
pruned when the global lower bound α is better than their
value α∗(∆) within the allowed level of tolerance ε. For the
classical pruning test (6) consistency amounts to requiring

lim
∆→0

α∗(∆)− α(∆) = 0.

In section 3 we shall present several consistent pruning
tests, which do not require computing an upper bound
α(·). This leads to an advantage in speed.

2.4 Presentation of the algorithm

In this section we present the algorithm by way of the
pseudo-code given below. The principal property of the
algorithm can be summarized by the following

Theorem 1. Suppose algorithm 1 is operated with a con-
sistent pruning test P and tolerance level ε > 0. Then
it terminates with an empty list L after a finite number
of steps, and on exit the returned lower bound α satisfies

Algorithm 1. Branch and bound for program (4).

1: Lower bound. Call local solver to compute lower
bound α. Initialize list L = {[−1, 1]m}.

2: while L �= ∅ do
3: Choose first element ∆ ∈ L for evaluation
4: Call local solver in ∆ to update lower bound α.
5: Call pruning test P.
6: if P(∆, α, ε) = pruning then
7: Remove ∆ from L
8: else
9: Remove ∆ and replace it by two successors

10: ∆′, ∆′′ in L
11: end if
12: Update ordering of L
13: end while
14: Return δ and α.

α∗ � α + ε. In particular, if α + ε < 0, then a robust
stability certificate for (1) is obtained.

Proof. 1) Let α(n) be the best lower bound found after
iteration n. Then α(n) � α(n+1) → α � α∗. Now suppose
first the algorithm ends finitely at iterate n, then at some
stage k � n a box ∆ containing a global maximum δ∗ has
been pruned. This box satisfies α∗(∆) = α∗, and since the
pruning test was based on α(k), we have α∗ = α∗(∆) �
α(k) + ε � α + ε. That gives the estimate claimed in the
statement.

2) It obviously suffices to show that there exists η > 0 and
an iteration counter n0 such that for all counters n � n0

boxes with diam(∆) < η are automatically pruned when
evaluated.

3) Since α is a continuous function, δ �→ α (A(δ)) is
uniformly continuous on [−1, 1]m by the hypothesis of
robust well-posedness, hence there exists η > 0 such that
for all all boxes with diam(∆) < η and all δ, δ′ ∈ ∆ we
have |α (A(δ)) − α (A(δ′)) | < 1

2ε. That means as soon as
a box with diam(∆) < η is evaluated, the local optimizer
finds a value α(∆) such that |α∗(∆)−α(∆)| < 1

2ε. If this
evaluation occurs at iteration n, then α∗(∆) � α(∆) +
1
2ε � α(n) + 1

2ε � α + 1
2ε, because the lower bound is

regularly updated.

4) Using consistency of P, by reducing η found in 3), we
can further assume that P(∆, α∗(∆) + α, 1

2ε) = pruning
for every α � 0 and every box with diam(∆) < η.

5) Now assume the algorithm does not terminate. Then
there exist boxes ∆k of diameter � ηk → 0, ηk <
η, which are evaluated at counter nk, but not pruned.
Then α∗(∆k) � α(nk) + 1

2ε, hence P(∆k, α
(nk), ε) =

P(∆k, α
(nk) + 1

2ε,
1
2ε) = P(∆k, α

∗(∆k) + ak,
1
2ε) =

pruning by consistency, where ak = α(nk)+ 1
2ε−α∗(∆k) �

0. This contradicts the assumption that ∆k was not
pruned and completes the proof. �

3. CENTRALIZING LOOP TRANSFORMATION

In order to prepare our pruning tests we follow Balakr-
ishnan et al. (1991) and apply a loop transformation to
the system (A,B,C,D) with uncertainty δ ∈ ∆ such

that the transformed system (Ã, B̃, C̃, D̃) has its uncer-
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